genomic array
Dotaz
Zobrazit nápovědu
New molecular biology methods have specified the evidence of chromosomal changes in the tumor tissue. These alterations can be proven to exist in the majority of malignant tumors. The fast progress of whole genome molecular biological methods has helped to improve the knowledge of tumor genetics. The evidence of genetic changes is a component of currently used diagnostic and prognostic schemes in particular cancer diseases. Karyotyping was the first method used in the clinical practice but its importance has decreased with the arrival of new molecular biological methods. The most common methods used for the detection of chromosomal deletions or amplifications are CGH, array-CGH and SNP array. The first two methods are based on the principle of comparison between tumor DNA and control DNA. The principle of SNP array uses the presence of single nucleotide polymorphisms that are located in the whole genome in each individual. SNP array can prove not only deletions or amplifications of the chromosomes but unlike CGH techniques it can also detect a loss of heterozygosity or uniparental disomy. The screening of chromosomal changes has nowadays become routine. These techniques are used for diagnosis, prognosis and treatment of cancer disease in certain cases.
- MeSH
- chromozomální aberace MeSH
- DNA nádorová analýza genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- nádory diagnóza genetika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů metody MeSH
- srovnávací genomová hybridizace metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA nádorová MeSH
Molecular-cytogenetic methods were used to analyse and specify complex genome rearrangements in malignant cells. Twelve samples of bone marrow cells were collected from patients with myelodysplastic syndromes (MDS). The complex karyotypes were examined by multicolour fluorescence in situ hybridization (mFISH), high-resolution multicolour banding (mBAND) and array comparative genomic hybridization (aCGH). For aCGH, DNA was isolated from fixed bone marrow cells in methanol and acetic acid and amplified by whole-genome amplification. Three samples were analysed by the oligonucleotide array NimbleGen on the basis of full service. BAC-based Haematochips (BlueGnome) were used for the other nine samples. Sensitivity and detection limits of both methods were compared. The results obtained by mFISH/mBAND were in most cases confirmed by the microarray technique. aCGH detected 43 unbalanced chromosomal changes that were also identified by classical cytogenetics and FISH. Moreover, aCGH discovered 14 additional changes. Cryptic amplifications and deletions were characterized with a resolution of 0.5 Mb. In one bone marrow sample with suspected monosomy 5 detected by conventional cytogenetic analysis, aCGH revealed a 22.3 Mb region of chromosome 5 inserted in another autosome within the complex karyotype. Amplified DNA was successfully used for aCGH in 11 out of 12 cases, improving resolution of unbalanced chromosomal aberrations. The combination of both approaches brought more detailed description of complex karyotypes and is highly recommended.
- MeSH
- cytogenetika přístrojové vybavení metody MeSH
- dospělí MeSH
- genová přestavba MeSH
- hybridizace in situ fluorescenční MeSH
- karyotypizace metody MeSH
- lidé MeSH
- lidské chromozomy, pár 5 MeSH
- myelodysplastické syndromy genetika MeSH
- srovnávací genomová hybridizace přístrojové vybavení metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
Hepatoblastoma is the most common primary hepatic tumor in children, and only a limited number of detailed karyotypic analyses have been reported to date. In the present study, cytogenetic abnormalities were identified in nine cases of hepatoblastoma from a single institution. Among characteristic chromosomal changes detected were simple numerical aberrations, structural alterations of chromosomes 1, 2, and 8, and the recurrent unbalanced rearrangements der(4)t(1;4)(q25.2;q35.1) and der(6)t(1;6)(q21;q26). Array comparative genomic hybridization was applied in four of the cases. The combined cytogenetic, molecular cytogenetic, and histopathologic analyses are presented here, together with clinical data. The results substantially confirm previous findings of aberrations involving chromosomal loci on 1q, 2 or 2q, 4q, 6q, 8 or 8q, and 20 as significant in the development and clinical course of this disease.
- MeSH
- chromozomální aberace MeSH
- cytogenetické vyšetření MeSH
- dítě MeSH
- hepatoblastom genetika patologie MeSH
- kojenec MeSH
- lidé MeSH
- lidské chromozomy, pár 1 MeSH
- lidské chromozomy, pár 2 MeSH
- lidské chromozomy, pár 6 MeSH
- lidské chromozomy, pár 8 MeSH
- nádory jater genetika patologie MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů metody MeSH
- srovnávací genomová hybridizace MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
Complementary attributes of Festuca and Lolium grasses can be combined in hybrid cultivars called Festuloliums, which are becoming increasingly popular fodder crops and amenity plants. Genomic constitution of commercially available Festuloliums was reported to vary from almost equal representation of parental genomes to apparent lack of one of them based on molecular cytogenetic analyses and screening with a small set of DNA markers, both approaches with limited resolution. Here, we describe the use of the DArTFest array comprising 3,884 polymorphic DArT markers for characterization of genomes in five Festulolium cultivars. In any of the cultivars, the minimum number of informative markers, which discriminated the parental Lolium and Festuca genomes was 361 and 171, respectively. Using the DArTFest array, it was possible to determine hybrid genome constitution at resolution which has never been achieved before and the analysis of a set of randomly selected plants from each cultivar provided information on genetic structure of outcrossing Festulolium cultivars. In addition to a core set of markers typical for each hybrid cultivar, markers occurring at low frequency among the plants within each cultivar were identified. Biological significance of genomic loci associated with the rare markers is yet to be determined. Finally, with the aim to simplify the use of DArTFest arrays to characterize Festuca × Lolium hybrids, various bulking strategies were compared. While all bulks were suitable for identification of hybrids, only bulks of few plants have been found to reveal the rare markers.
- MeSH
- chiméra genetika MeSH
- chromozomy rostlin MeSH
- DNA rostlinná genetika MeSH
- Festuca genetika MeSH
- fyzikální mapování chromozomů MeSH
- genetická variace MeSH
- genetické markery MeSH
- genom rostlinný MeSH
- genotyp MeSH
- hybridizace genetická MeSH
- jílek genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- zemědělské plodiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- genetické markery MeSH
BACKGROUND: Chromosomal microarray analysis has been shown to be a valuable and cost effective assay for elucidating copy number variants (CNVs) in children with intellectual disability and developmental delay (ID/DD). METHODS: In our study, we performed array-based comparative genomic hybridization (array-CGH) analysis using oligonucleotide-based platforms in 542 Czech patients with ID/DD, autism spectrum disorders and multiple congenital abnormalities. Prior to the array-CGH analysis, all the patients were first examined karyotypically using G-banding. The presence of CNVs and their putative derivation was confirmed using fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA) and predominantly relative quantitative polymerase chain reaction (qPCR). RESULTS: In total, 5.9% (32/542) patients were positive for karyotypic abnormalities. Pathogenic/likely pathogenic CNVs were identified in 17.7% of them (96/542), variants of uncertain significance (VOUS) were detected in 4.8% (26/542) and likely benign CNVs in 9.2% of cases (50/542). We identified 6.6% (36/542) patients with known recurrent microdeletion (24 cases) and microduplication (12 cases) syndromes, as well as 4.8% (26/542) patients with non-recurrent rare microdeletions (21 cases) and microduplications (5 cases). In the group of patients with submicroscopic pathogenic/likely pathogenic CNVs (13.3%; 68/510) we identified 91.2% (62/68) patients with one CNV, 5.9% (4/68) patients with two likely independent CNVs and 2.9% (2/68) patients with two CNVs resulting from cryptic unbalanced translocations. Of all detected CNVs, 21% (31/147) had a de novo origin, 51% (75/147) were inherited and 28% (41/147) of unknown origin. In our cohort pathogenic/likely pathogenic microdeletions were more frequent than microduplications (69%; 51/74 vs. 31%; 23/74) ranging in size from 0.395 Mb to 10.676 Mb (microdeletions) and 0.544 Mb to 8.156 Mb (microduplications), but their sizes were not significantly different (P = 0.83). The pathogenic/likely pathogenic CNVs (median 2.663 Mb) were significantly larger than benign CNVs (median 0.394 Mb) (P < 0.00001) and likewise the pathogenic/likely pathogenic CNVs (median 2.663 Mb) were significantly larger in size than VOUS (median 0.469 Mb) (P < 0.00001). CONCLUSIONS: Our results confirm the benefit of array-CGH in the current clinical genetic diagnostics leading to identification of the genetic cause of ID/DD in affected children.
- Klíčová slova
- Array-CGH, CNV, Developmental delay, Intellectual disability, Microdeletion, Microduplication,
- MeSH
- dítě MeSH
- kohortové studie MeSH
- kojenec MeSH
- lidé MeSH
- mentální retardace genetika MeSH
- mladiství MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů * MeSH
- srovnávací genomová hybridizace * MeSH
- variabilita počtu kopií segmentů DNA * MeSH
- vývojové poruchy u dětí genetika MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
MOTIVATION: Genome analysis has become one of the most important tools for understanding the complex process of cancerogenesis. With increasing resolution of CGH arrays, the demand for computationally efficient algorithms arises, which are effective in the detection of aberrations even in very noisy data. RESULTS: We developed a rather simple, non-parametric technique of high computational efficiency for CGH array analysis that adopts a median absolute deviation concept for breakpoint detection, comprising median smoothing for pre-processing. The resulting algorithm has the potential to outperform any single smoothing approach as well as several recently proposed segmentation techniques. We show its performance through the application of simulated and real datasets in comparison to three other methods for array CGH analysis. IMPLEMENTATION: Our approach is implemented in the R-language and environment for statistical computing (version 2.6.1 for Windows, R-project, 2007). The code is available at: http://www.iba.muni.cz/~budinska/msmad.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Complex chromosomal rearrangements (CCR) represent rare structural chromosome abnormalities frequently associated with infertility. In this study, meiotic segregation in spermatozoa of an infertile normospermic carrier of a 4-breakpoint t(1;3;6) CCR was analysed. A newly developed array comparative genomic hybridization protocol was used, and all chromosomes in 50 single sperm cells were simultaneously examined. Three-colour FISH was used to analyse chromosome segregation in 1557 other single sperm cells. It was also used to measure an interchromosomal effect; sperm chromatin structure assay was used to measure chromatin integrity. A high-frequency of unbalanced spermatozoa (84%) was observed, mostly arising from the 3:3 symmetrical segregation mode. Array comparative genomic hybridization was used to detect additional aneuploidies in two out of 50 spermatozoa (4%) in chromosomes not involved in the complex chromosome rearrangement. Significantly increased rates of diploidy and XY disomy were found in the CCR carrier compared with the control group (P < 0.001). Defective condensation of sperm chromatin was also found in 22.7% of spermatozoa by sperm chromatin structure assay. The results indicate that the infertility in the man with CCR and normal spermatozoa was caused by a production of chromosomally unbalanced, XY disomic and diploid spermatozoa and spermatozoa with defective chromatin condensation.
- Klíčová slova
- array CGH, complex chromosome rearrangement, interchromosomal effect, male infertility, meiotic segregation, sperm aneuploidy,
- MeSH
- analýza jednotlivých buněk MeSH
- body zlomu chromozomu * MeSH
- dospělí MeSH
- genová přestavba * MeSH
- heterozygot MeSH
- hybridizace in situ fluorescenční MeSH
- lidé MeSH
- mužská infertilita etiologie MeSH
- poruchy sexuálního vývoje s karyotypem 46, XY diagnóza genetika patologie patofyziologie MeSH
- profáze meiózy I MeSH
- segregace chromozomů * MeSH
- spermie patologie MeSH
- srovnávací genomová hybridizace MeSH
- translokace genetická * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Preimplantation genetic diagnosis (PGD) is a complex approach for detecting genetic abnormalities in early-stage embryos using genetic or molecular cytogenetic methods. Recently, single cell genomic methods based on DNA microarrays have been used for PGD. In the presented paper, we discuss and demonstrate the possibility to detect copy number variation (CNVs) in trophectoderm cells biopsied from 5-day embryos using 60-mer oligonucleotide-based array-CGH with CytoSure 8 × 15K Aneuploidy Array. Whereas this microarray platform was originally designed for analysis of unamplified DNA derived from many cells, the new methods, developed for single-cell genomics, allow the application of oligo arrays technology in preimplanation genetic diagnosis. Preclinical validation of single cell array-CGH was made by analysis of 30 positive and negative controls. Validation process included whole genome amplification of DNA from 5-10 cells with normal karyotype and from samples with known aneuploidies and structural aberrations. Subsequently, we analyzed the whole genome profiles in 118 embryos; aneuploidies of chromosomes were observed in 26.7%; segmental imbalances were proved in 6.8% of embryos. Our first experience confirmed that this oligonucleotide-based array technique enables high-resolution preimplantation aneuploidy screening of all the 23 chromosome pairs and sensitive preimplantation diagnosis of segmental imbalances such as deletions, duplications and amplifications.
- Klíčová slova
- chromosomal aberrations - preimplantation genetic analysis - oligonucleotide-based microarray - array-CGH.,
- MeSH
- aneuploidie MeSH
- chromozomální aberace * MeSH
- lidé MeSH
- prediktivní hodnota testů MeSH
- preimplantační diagnóza metody MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- srovnávací genomová hybridizace * MeSH
- těhotenství MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Developmental delay is often a predictor of mental retardation (MR) or autism, two relatively frequent developmental disorders severely affecting intellectual and social functioning. The causes of these conditions remain unknown in most patients. They have a strong genetic component, but the specific genetic defects can only be identified in a fraction of patients. Recent developments in genomics supported the establishment of the causal link between copy number variants in the genomes of some patients and their affection. One of the techniques suitable for this analysis is array comparative genome hybridization, which can be used both for detailed mapping of chromosome rearrangements identified by classical cytogenetics and for the identification of novel submicroscopic gains or losses of genetic material. We illustrate the power of this approach in two patients. Patient 1 had a cytogenetically visible deletion of chromosome X and the molecular analysis was used to specify the gene content of the deletion and the prognosis of the child. Patient 2 had a seemingly normal karyotype and the analysis revealed a small recurrent deletion of chromosome 1 likely to be responsible for his phenotype. However, the genetic dissection of MR and autism is complicated by high heterogeneity of the genetic aberrations among patients and by broad variability of phenotypic effects of individual genetic defects.
- MeSH
- chromozomální delece * MeSH
- dítě MeSH
- genetické nemoci vázané na chromozom X genetika MeSH
- genom lidský * MeSH
- lidé MeSH
- lidské chromozomy X genetika MeSH
- lidské chromozomy, pár 1 genetika MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- srovnávací genomová hybridizace * MeSH
- vývojové poruchy u dětí genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
Chromophobe renal cell carcinoma (CRCC) with neuroendocrine differentiation (CRCCND) has only recently been described. Eighteen cases of CRCC with morphologic features suggestive of neuroendocrine differentiation were selected from among 624 CRCCs in our registry. The tissues were fixed in neutral formalin, embedded in paraffin, cut into 4- to 5-μm-thick sections, and stained with hematoxylin and eosin. As CRCC with neuroendocrine features, tumors with following morphology were suggested: (1) trabecular/palisading/ribbon-like, gyriform, insular, glandular, and solid pattern; (2) uniform polygonal cells formed in small islets; and (3) cribriform pattern in combination with palisading. Selected cases were further analyzed using immunohistochemistry, electron microscopy, array comparative genomic hybridization, and fluorescence in situ hybridization. Cases were classified as CRCCND or CRCC with neuroendocrine-like features (CRCCND-L) based on the immunohistochemical expression of neuroendocrine markers: CRCCND, 4 cases, age range 49 to 79 years, size ranged from 2.2 to 22 cm, and CRCCND-L, 14 cases, age range 34 to 74 years, size range 3.8 to 16.5 cm. Follow-up information was available for 11 of 18 patients aged 0.5 to 12 years. Two of 4 CRCCNDs showed aggressive clinical course with metastatic spreading. Chromophobe renal cell carcinomas with neuroendocrine differentiation were focally positive for CD56 (4/4), synaptophysin (4/4), chromogranin A (1/4), and neuron-specific enolase (3/4). All 14 CRCCND-Ls were mostly negative or very weakly focally positive for some of the aforementioned markers. All 18 tumors were positive for cytokeratin 7 and CD117. Ultrastructural analysis showed poorly preserved neuroendocrine granules only in 2 of 4 analyzed CRCCNDs. Losses of chromosomes 1, 2, 6, and 10 were found in all analyzable CRCCNDs, whereas multiple losses (chromosomes 1, 2, 6, 10, 13, 17, and 21) and gains (chromosomes 4, 11, 12, 14, 15, 16, 19, and 20) were found in CRCCND-L.
- Klíčová slova
- Chromophobe renal cell carcinoma, Chromosomal numerical aberrations, Immunohistochemistry, Kidney, Neuroendocrine differentiation, aCGH,
- MeSH
- diferenciální diagnóza MeSH
- dospělí MeSH
- imunohistochemie MeSH
- karcinom z renálních buněk genetika metabolismus patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- metastázy nádorů MeSH
- nádory ledvin genetika metabolismus patologie MeSH
- neuroendokrinní nádory genetika metabolismus patologie MeSH
- senioři MeSH
- srovnávací genomová hybridizace MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH