rhodopsin Dotaz Zobrazit nápovědu
Rhodopsin photosystems convert light energy into electrochemical gradients used by the cell to produce ATP, or for other energy-demanding processes. While these photosystems are widespread in the ocean and have been identified in diverse microbial taxonomic groups, their physiological role in vivo has only been studied in few marine bacterial strains. Recent metagenomic studies revealed the presence of rhodopsin genes in the understudied Verrucomicrobiota phylum, yet their distribution within different Verrucomicrobiota lineages, their diversity, and function remain unknown. In this study, we show that more than 7% of Verrucomicrobiota genomes (n = 2916) harbor rhodopsins of different types. Furthermore, we describe the first two cultivated rhodopsin-containing strains, one harboring a proteorhodopsin gene and the other a xanthorhodopsin gene, allowing us to characterize their physiology under laboratory-controlled conditions. The strains were isolated in a previous study from the Eastern Mediterranean Sea and read mapping of 16S rRNA gene amplicons showed the highest abundances of these strains at the deep chlorophyll maximum (source of their inoculum) in winter and spring, with a substantial decrease in summer. Genomic analysis of the isolates suggests that motility and degradation of organic material, both energy demanding functions, may be supported by rhodopsin phototrophy in Verrucomicrobiota. Under culture conditions, we show that rhodopsin phototrophy occurs under carbon starvation, with light-mediated energy generation supporting sugar transport into the cells. Overall, this study suggests that photoheterotrophic Verrucomicrobiota may occupy an ecological niche where energy harvested from light enables bacterial motility toward organic matter and supports nutrient uptake.
- MeSH
- Bacteria * genetika MeSH
- biologický transport MeSH
- fototrofní procesy MeSH
- fylogeneze MeSH
- rhodopsiny mikrobiální genetika metabolismus MeSH
- RNA ribozomální 16S genetika metabolismus MeSH
- rodopsin * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- rhodopsiny mikrobiální MeSH
- RNA ribozomální 16S MeSH
- rodopsin * MeSH
- Klíčová slova
- RETINAL PIGMENTS *,
- MeSH
- retinální pigmenty * MeSH
- rodopsin * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- retinální pigmenty * MeSH
- rodopsin * MeSH
The functional properties of some biological ion channels and membrane transport proteins are proposed to exploit anion-hydrophobic interactions. Here, we investigate a chloride-pumping rhodopsin as an example of a membrane protein known to contain a defined anion binding site composed predominantly of hydrophobic residues. Using molecular dynamics simulations, we explore Cl- binding to this hydrophobic site and compare the dynamics arising when electronic polarization is neglected (CHARMM36 [c36] fixed-charge force field), included implicitly (via the prosECCo force field), or included explicitly (through the polarizable force field, AMOEBA). Free energy landscapes of Cl- moving out of the binding site and into bulk solution demonstrate that the inclusion of polarization results in stronger ion binding and a second metastable binding site in chloride-pumping rhodopsin. Simulations focused on this hydrophobic binding site also indicate longer binding durations and closer ion proximity when polarization is included. Furthermore, simulations reveal that Cl- within this binding site interacts with an adjacent loop to facilitate rebinding events that are not observed when polarization is neglected. These results demonstrate how the inclusion of polarization can influence the behavior of anions within protein binding sites and can yield results comparable with more accurate and computationally demanding methods.
- MeSH
- anionty MeSH
- chloridy * chemie MeSH
- elektronika MeSH
- rodopsin * MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anionty MeSH
- chloridy * MeSH
- rodopsin * MeSH
The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.
- Klíčová slova
- biosensors, fluorescence imaging, fluorescent proteins, genetically encoded indicators, voltage imaging,
- MeSH
- akční potenciály fyziologie MeSH
- angiotensin konvertující enzym 2 * MeSH
- mutace genetika MeSH
- myši MeSH
- neurony fyziologie MeSH
- rodopsin * genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- angiotensin konvertující enzym 2 * MeSH
- rodopsin * MeSH
The recently discovered Neorhodopsin (NeoR) exhibits absorption and emission maxima in the near-infrared spectral region, which together with the high fluorescence quantum yield makes it an attractive retinal protein for optogenetic applications. The unique optical properties can be rationalized by a theoretical model that predicts a high charge transfer character in the electronic ground state (S0) which is otherwise typical of the excited state S1 in canonical retinal proteins. The present study sets out to assess the electronic structure of the NeoR chromophore by resonance Raman (RR) spectroscopy since frequencies and relative intensities of RR bands are controlled by the ground and excited state's properties. The RR spectra of NeoR differ dramatically from those of canonical rhodopsins but can be reliably reproduced by the calculations carried out within two different structural models. The remarkable agreement between the experimental and calculated spectra confirms the consistency and robustness of the theoretical approach.
- MeSH
- barvicí látky MeSH
- Ramanova spektroskopie MeSH
- retina MeSH
- rhodopsiny mikrobiální * chemie MeSH
- rodopsin * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- barvicí látky MeSH
- rhodopsiny mikrobiální * MeSH
- rodopsin * MeSH
Rhodopsins are widely distributed across all domains of life where they perform a plethora of functions through the conversion of electromagnetic radiation into physicochemical signals. As a result of an extensive survey of available genomic and metagenomic sequencing data, we reported the existence of novel clades and exotic sequence motifs scattered throughout the evolutionary radiations of both Type-1 and Type-3 rhodopsins that will likely enlarge the optogenetics toolbox. We expanded the typical rhodopsin blueprint by showing that a highly conserved and functionally important arginine residue (i.e., Arg82) was substituted multiple times during evolution by an extensive amino acid spectrum. We proposed the umbrella term Alt-rhodopsins (AltRs) for all such proteins that departed Arg82 orthodoxy. Some AltRs formed novel clades in the rhodopsin phylogeny and were found in giant viruses. Some newly uncovered AltRs were phylogenetically close to heliorhodopsins, which allowed a closer examination of the phylogenetic border between Type-1 rhodopsins and heliorhodopsins. Comprehensive phylogenetic trees and ancestral sequence reconstructions allowed us to advance the hypothesis that proto-heliorhodopsins were a eukaryotic innovation before their subsequent diversification into the extant Type-3 rhodopsins. IMPORTANCE The rhodopsin scaffold is remarkably versatile and widespread, coupling light availability to energy production and other light-dependent cellular responses with minor alterations to critical residues. We described an unprecedented spectrum of substitutions at one of the most conserved amino acids in the rhodopsin fold, Arg82. We denoted such phylogenetically diverse rhodopsins with the umbrella name Alt-rhodopsins (AltR) and described a distinct branch of AltRs in giant viruses. Intriguingly, some AltRs were the closest phylogenetic neighbors to Heliorhodopsins (HeRs) whose origins have remained enigmatic. Our analyses of HeR origins in the light of AltRs led us to posit a most unusual evolutionary trajectory that suggested a eukaryotic origin for HeRs before their diversification in prokaryotes.
- Klíčová slova
- Alt-rhodopsins, AltRs, heliorhodopsins, metagenomics, optogenetics, rhodopsins,
- MeSH
- fylogeneze MeSH
- rhodopsiny mikrobiální * genetika MeSH
- rodopsin * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rhodopsiny mikrobiální * MeSH
- rodopsin * MeSH
The ER membrane protein complex (EMC) is required for the biogenesis of a subset of tail anchored (TA) and polytopic membrane proteins, including Rhodopsin-1 (Rh1) and the TRP channel. To understand the physiological implications of EMC-dependent membrane protein biogenesis, we perform a bioinformatic identification of Drosophila TA proteins. From 254 predicted TA proteins, screening in larval eye discs identified two proteins that require EMC for their biogenesis: fan and Xport-A. Fan is required for male fertility in Drosophila and we show that EMC is also required for this process. Xport-A is essential for the biogenesis of both Rh1 and TRP, raising the possibility that disruption of Rh1 and TRP biogenesis in EMC mutants is secondary to the Xport-A defect. We show that EMC is required for Xport-A TMD membrane insertion and that EMC-independent Xport-A mutants rescue Rh1 and TRP biogenesis in EMC mutants. Finally, our work also reveals a role for Xport-A in a glycosylation-dependent triage mechanism during Rh1 biogenesis in the endoplasmic reticulum.
- Klíčová slova
- ER membrane protein complex, Rh1, TRP, Xport-A, tail anchored proteins,
- MeSH
- Drosophila genetika metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- molekulární chaperony * genetika metabolismus MeSH
- proteiny Drosophily * genetika metabolismus MeSH
- represorové proteiny * genetika metabolismus MeSH
- rodopsin * genetika MeSH
- transkripční faktory bHLH * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- emc protein, Drosophila MeSH Prohlížeč
- membránové proteiny MeSH
- molekulární chaperony * MeSH
- proteiny Drosophily * MeSH
- represorové proteiny * MeSH
- rodopsin * MeSH
- transkripční faktory bHLH * MeSH
- Xport-A protein, Drosophila MeSH Prohlížeč
The protein-protein interactions that underlie shut-off of the light-activated rhodopsin were studied using synthetic peptides derived from C-terminal region of the rhodopsin. The photoresponses were recorded in whole-cell voltage clamp from rod outer segments (ROS) that were internally dialyzed with an intracellular solution containing the synthetic peptides. This was the first time that synthetic peptides have been used in functionally intact ROS. None of the tested peptides promoted the shut-off of the photolyzed rhodopsin (R) by stimulating the binding of an activated arrestin to non-phosphorylated R, contrary to what was expected from in vitro experiments (Puig et al. FEBS Lett. 362: 185-188, 1995).
- MeSH
- adenosintrifosfát farmakologie MeSH
- arrestin metabolismus MeSH
- fosforylace MeSH
- fotolýza MeSH
- ještěři MeSH
- kalmodulin farmakologie MeSH
- kinetika MeSH
- molekulární sekvence - údaje MeSH
- peptidové fragmenty chemie farmakologie MeSH
- rodopsin analogy a deriváty chemie metabolismus farmakologie MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie MeSH
- skot MeSH
- světlo * MeSH
- zevní segment tyčinky fyziologie účinky záření MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- adenosintrifosfát MeSH
- arrestin MeSH
- kalmodulin MeSH
- metarhodopsins MeSH Prohlížeč
- peptidové fragmenty MeSH
- rodopsin MeSH
The visual sensory system is essential for animals to perceive their environment and is thus under strong selection. In aquatic environments, light intensity and spectrum differ primarily along a depth gradient. Rhodopsin (RH1) is the only opsin responsible for dim-light vision in vertebrates and has been shown to evolve in response to the respective light conditions, including along a water depth gradient in fishes. In this study, we examined the diversity and sequence evolution of RH1 in virtually the entire adaptive radiation of cichlid fishes in Lake Tanganyika, focusing on adaptations to the environmental light with respect to depth. We show that Tanganyikan cichlid genomes contain a single copy of RH1. The 76 variable amino acid sites detected in RH1 across the radiation were not uniformly distributed along the protein sequence, and 31 of these variable sites show signals of positive selection. Moreover, the amino acid substitutions at 15 positively selected sites appeared to be depth-related, including three key tuning sites that directly mediate shifts in the peak spectral sensitivity, one site involved in protein stability and 11 sites that may be functionally important on the basis of their physicochemical properties. Among the strongest candidate sites for deep-water adaptations are two known key tuning sites (positions 292 and 299) and three newly identified variable sites (37, 104 and 290). Our study, which is the first comprehensive analysis of RH1 evolution in a massive adaptive radiation of cichlid fishes, provides novel insights into the evolution of RH1 in a freshwater environment.
- Klíčová slova
- freshwater fish, opsin, photic environment, rod photoreceptor, spectral tuning, vision,
- MeSH
- cichlidy * genetika MeSH
- fylogeneze MeSH
- jezera MeSH
- molekulární evoluce MeSH
- rodopsin genetika MeSH
- ryby MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tanzanie MeSH
- Názvy látek
- rodopsin MeSH
- voda MeSH
Near-infrared (NIR)-driven rhodopsins are of great interest in optogenetics and other optobiotechnological developments such as artificial photosynthesis and deep-tissue voltage imaging. Here we report that the proton pump proteorhodopsin (PR) containing a NIR-active retinal analogue (PR:MMAR) exhibits intense NIR fluorescence at a quantum yield of 3.3%. This is 130 times higher than native PR ( Lenz , M. O. ; Biophys J. 2006 , 91 , 255 - 262 ) and 3-8 times higher than the QuasAr and PROPS voltage sensors ( Kralj , J. ; Science 2011 , 333 , 345 - 348 ; Hochbaum , D. R. ; Nat. Methods 2014 , 11 , 825 - 833 ). The NIR fluorescence strongly depends on the pH in the range of 6-8.5, suggesting potential application of MMAR-binding proteins as ultrasensitive NIR-driven pH and/or voltage sensors. Femtosecond transient absorption spectroscopy showed that upon near-IR excitation, PR:MMAR features an unusually long fluorescence lifetime of 310 ps and the absence of isomerized photoproducts, consistent with the high fluorescence quantum yield. Stimulated Raman analysis indicates that the NIR-absorbing species develops upon protonation of a conserved aspartate, which promotes charge delocalization and bond length leveling due to an additional methylamino group in MMAR, in essence providing a secondary protonated Schiff base. This results in much smaller bond length alteration along the conjugated backbone, thereby conferring significant single-bond character to the C13═C14 bond and structural deformation of the chromophore, which interferes with photoinduced isomerization and extends the lifetime for fluorescence. Hence, our studies allow for a molecular understanding of the relation between absorption/emission wavelength, isomerization, and fluorescence in PR:MMAR. As acidification enhances the resonance state, this explains the strong pH dependence of the NIR emission.
- MeSH
- fluorescence MeSH
- koncentrace vodíkových iontů MeSH
- protony MeSH
- Ramanova spektroskopie MeSH
- retinaldehyd analogy a deriváty MeSH
- rhodopsiny mikrobiální chemie MeSH
- Schiffovy báze chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteorhodopsin MeSH Prohlížeč
- protony MeSH
- retinaldehyd MeSH
- rhodopsiny mikrobiální MeSH
- Schiffovy báze MeSH