Alga-derived substrates select for distinct Betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21873481
PubMed Central
PMC3194872
DOI
10.1128/aem.05107-11
PII: AEM.05107-11
Knihovny.cz E-resources
- MeSH
- Betaproteobacteria classification genetics growth & development metabolism MeSH
- Chlorophyta chemistry MeSH
- Cryptophyta chemistry MeSH
- Ecosystem * MeSH
- In Situ Hybridization, Fluorescence MeSH
- Environmental Microbiology * MeSH
- Cyanobacteria chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We examined the proportions of major Betaproteobacteria subgroups within bacterial communities in diverse nonaxenic, monospecific cultures of algae or cyanobacteria: four species of cryptophyta (genera Cryptomonas and Rhodomonas), four species of chlorophyta (genera Pediastrum, Staurastrum, and Chlamydomonas), and two species of cyanobacteria (genera Dolichospermum and Aphanizomenon). In the cryptophyta cultures, Betaproteobacteria represented 48 to 71% of total bacteria, the genus Limnohabitans represented 18 to 26%, and the Polynucleobacter B subcluster represented 5 to 16%. In the taxonomically diverse chlorophyta group, the genus Limnohabitans accounted for 7 to 45% of total bacteria. In contrast, cyanobacterial cultures contained significantly lower proportions of the Limnohabitans bacteria (1 to 3% of the total) than the cryptophyta and chlorophyta cultures. Notably, largely absent in all of the cultures was Polynucleobacter necessarius (Polynucleobacter C subcluster). Subsequently, we examined the growth of Limnohabitans strains in the presence of different algae or their extracellular products (EPP). Two strains, affiliated with Limnohabitans planktonicus and Limnohabitans parvus, were separately inoculated into axenic cultures of three algal species growing in an inorganic medium: Cryptomonas sp., Chlamydomonas noctigama, and Pediastrum boryanum. The Limnohabitans strains cocultured with these algae or inoculated into their EPP consistently showed (i) pronounced population growth compared to the control without the algae or EPP and (ii) stronger growth stimulation of L. planktonicus than of L. parvus. Overall, growth responses of the Limnohabitans strains cultured with algae were highly species specific, which suggests a pronounced niche separation between two closely related Limnohabitans species likely mediated by different abilities to utilize the substrates produced by different algal species.
See more in PubMed
Alonso C., Zeder M., Piccini C., Conde D., Pernthaler J. 2009. Ecophysiological differences of betaproteobacterial populations in two hydrochemically distinct compartments of a subtropical lagoon. Environ. Microbiol. 11:867–876 PubMed
Buck U., Grossart H.-P., Amann R., Pernthaler J. 2009. Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environ. Microbiol. 11:1854–1865 PubMed
Cole J. J. 1982. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Sys. 13:291–314
Giroldo D., Ortolano P. I. C., Vieira A. A. H. 2007. Bacteria-algae association in batch cultures of phytoplankton from a tropical reservoir: the significance of algal carbohydrates. Fresh. Biol. 52:1281–1289
Giroldo D., Vieira A. A. H. 2005. Polymeric and free sugars released by three phytoplanktonic species from a freshwater tropical eutrophic reservoir. J. Plankton Res. 27:695–705
Grossart H.-P., Levold F., Allgaier M., Simon M., Brinkhoff T. 2005. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7:860–873 PubMed
Guillard R. R. L., Lorenzen C. J. 1972. Yellow-green algae with chlorophyllide c. J. Phycol. 8:10–14
Hahn M. W., et al. 2010. Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol. 60:1358–1365 PubMed PMC
Hahn M. W., Lang E., Brandt U., Spröer C. 2011. Polynucleobacter acidiphobus sp. nov., a representative of an abundant group of planktonic freshwater bacteria. Int. J. Syst. Evol. Microbiol. 61:788–794 PubMed PMC
Hahn M. W., Minasyan A., Lang E., Koll U., Spröer C. 2011. Polynucleobacter difficilis sp. nov., a planktonic freshwater bacterium affiliated with subcluster B1 of the genus Polynucleobacter. Int. J. Syst. Evol. Microbiol. [Epub ahead of print.] doi:10.1099/ijs.0.031393-0 PubMed DOI PMC
Hahn M. W., Pöckl M., Wu Q. L. 2005. Low intraspecific diversity in a Polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Appl. Environ. Microbiol. 71:4539–4547 PubMed PMC
Hahn M. W., Stadler P., Wu Q. L., Pöckl M. 2004. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J. Microb. Methods 57:379–390 PubMed
Horňák K., Jezbera J., Nedoma J., Gasol J., Šimek K. 2006. Effects of resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography. Aquat. Microb. Ecol. 45:277–289
Horňák K., Jezbera J., Šimek K. 2008. Effects of a Microcystis aeruginosa bloom and bacterivory on bacterial abundance and activity in a eutrophic reservoir. Aquat. Microb. Ecol. 52:107–117
Horner-Devine M. C., Leibold M. A., Smith V., Bohannan B. J. M. 2003. Bacterial diversity patterns along a gradient of primary productivity. Ecol. Lett. 6:613–622
Jezbera J., Horňák K., Šimek K. 2005. Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microb. Ecol. 52:351–363 PubMed
Jezberová J., et al. 2010. Ubiquity of Polynucleobacter necessarius ssp. asymbioticus in lentic freshwater habitats of a heterogenous 2000 km2 area. Environ. Microbiol. 12:658–669 PubMed PMC
Kasalický V., Jezbera J. K., Šimek K., Hahn M. W. 2010: Limnohabitans planktonicus sp. nov., and Limnohabitans parvus sp. nov., two novel planktonic Betaproteobacteria isolated from a freshwater reservoir. Int. J. Syst. Evol. Microbiol. 60:2710–2714 PubMed PMC
Lindström E. S. 2001. Investigating influential factors on bacterioplankton community composition: results from a field study of five mesotrophic lakes. Microb. Ecol. 42:598–605 PubMed
Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15:593–600
Murray A. E., Arnosti C., De La Rocha C. L., Grossart H. P., Passow U. 2007. Microbial dynamics in autotrophic and heterotrophic seawater mesocosms. II. Bacterioplankton community structure and hydrolytic enzyme activities. Aquat. Microb. Ecol. 49:123–141
Newton R. J., Jones S. E., Eiler A. K. D., McMahon, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75:14–49 PubMed PMC
Peréz M. T., Sommaruga R. 2006. Differential effect of algal- and soil-derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnol. Oceanogr. 51:2527–2537
Pernthaler A., Pernthaler J., Amann R. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68:3094–3101 PubMed PMC
Posch T., et al. 1999. Predator-induced changes of bacterial size structure and productivity studied on an experimental microbial community. Aquat. Microb. Ecol. 18:235–246
Reynolds C. S. 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, United Kingdom
Rychtecký P., Znachor P. 2011. Spatial heterogeneity and seasonal succession of phytoplankton along the longitudinal gradient in a eutrophic reservoir. Hydrobiologia 663:175–186
Salcher M. M., Pernthaler J., Zeder M., Psenner R., Posch T. 2008. Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ. Microbiol. 10:2074–2086 PubMed
Sapp M., Gerdts G., Wellinger M., Wichels A. 2008. Consuming algal products: trophic interactions of bacteria and a diatom species determined by RNA stable isotope probing. Helgol. Mar. Res. 62:283–287
Sapp M., Wichels A., Gerdts G. 2007. Impacts of cultivation of marine diatoms on the associated bacterial community. Appl. Environ. Microbiol. 73:3117–3120 PubMed PMC
Sekar R., et al. 2003. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microbiol. 69:2928–2935 PubMed PMC
Šimek K., et al. 2006. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ. Microbiol. 8:1613–1624 PubMed
Šimek K., et al. 2008. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquat. Microb. Ecol. 51:249–262
Šimek K., Kasalický V., Horňák K., Hahn M. W., Weinbauer M. G. 2010. Assessing niche separation in coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore. Appl. Environ. Microbiol. 76:1406–1416 PubMed PMC
Šimek K., et al. 2010. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus Limnohabitans. Appl. Environ. Microbiol. 76:631–639 PubMed PMC
Šimek K., et al. 2001. Changes in bacterial community composition, dynamics, and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl. Environ. Microbiol. 67:2723–2733 PubMed PMC
Šimek K., et al. 1997. Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl. Environ. Microbiol. 63:587–595 PubMed PMC
Sundh I. 1992. Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Appl. Environ. Microbiol. 58:2938–2947 PubMed PMC
Wu Q. L., Hahn M. W. 2006. Differences in structure and dynamics of Polynucleobacter communities in a temperate and a subtropical lake revealed at three phylogenetic levels. FEMS Microb. Ecol. 57:67–79 PubMed
Wu Q. L., Hahn M. W. 2006. High predictability of the seasonal dynamics of a species-like Polynucleobacter population in a freshwater lake. Environ. Microbiol. 8:1660–1666 PubMed
Yooseph S., et al. 2010. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468:60–66 PubMed
Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans