• This record comes from PubMed

Gene Expression Pattern and Protein Localization of Arabidopsis Phospholipase D Alpha 1 Revealed by Advanced Light-Sheet and Super-Resolution Microscopy

. 2018 ; 9 () : 371. [epub] 20180321

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Phospholipase D alpha 1 (PLDα1, At3g15730) and its product phosphatidic acid (PA) are involved in a variety of cellular and physiological processes, such as cytoskeletal remodeling, regulation of stomatal closure and opening, as well as biotic and abiotic stress signaling. Here we aimed to study developmental expression patterns and subcellular localization of PLDα1 in Arabidopsis using advanced microscopy methods such as light-sheet fluorescence microscopy (LSFM) and structured illumination microscopy (SIM). We complemented two knockout pldα1 mutants with a YFP-tagged PLDα1 expressed under the PLDα1 native promoter in order to study developmental expression pattern and subcellular localization of PLDα1 in Arabidopsis thaliana under natural conditions. Imaging of tissue-specific and developmentally-regulated localization of YFP-tagged PLDα1 by LSFM in roots of growing seedlings showed accumulation of PLDα1-YFP in the root cap and the rhizodermis. Expression of PLDα1-YFP in the rhizodermis was considerably higher in trichoblasts before and during root hair formation and growth. Thus, PLDα1-YFP accumulated in emerging root hairs and in the tips of growing root hairs. PLDα1-YFP showed cytoplasmic subcellular localization in root cap cells and in cells of the root transition zone. In aerial parts of plants PLDα1-YFP was also localized in the cytoplasm showing enhanced accumulation in the cortical cytoplasmic layer of epidermal non-dividing cells of hypocotyls, leaves, and leaf petioles. However, in dividing cells of root apical meristem and leaf petiole epidermis PLDα1-YFP was enriched in mitotic spindles and phragmoplasts, as revealed by co-visualization with microtubules. Finally, super-resolution SIM imaging revealed association of PLDα1-YFP with both microtubules and clathrin-coated vesicles (CCVs) and pits (CCPs). In conclusion, this study shows the developmentally-controlled expression and subcellular localization of PLDα1 in dividing and non-dividing Arabidopsis cells.

See more in PubMed

Ambrose C., Allard J. F., Cytrynbaum E. N., Wasteneys G. O. (2011). A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat. Commun. 16, 430 10.1038/ncomms1444 PubMed DOI PMC

Andreeva Z., Ho A. Y. Y., Barthet M. M., Potocký M., Bezvoda R., Žárský V., et al. (2009). Phospholipase D family interactions with the cytoskeleton: isoform δ promotes plasma membrane anchoring of cortical microtubules. Funct. Plant Biol. 36, 600–612. 10.1071/FP09024 PubMed DOI

Bargmann B. O., Munnik T. (2006). The role of phospholipase D in plant stress responses. Curr. Opin. Plant Biol. 9, 515–522. 10.1016/j.pbi.2006.07.011 PubMed DOI

Bargmann B. O., Laxalt A. M., ter Riet B., van Schooten B., Merquiol E., Testerink C., et al. . (2009). Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 50, 78–89. 10.1093/pcp/pcn173 PubMed DOI PMC

Boutté Y., Frescatada-Rosa M., Men S., Chow C. M., Ebine K., Gustavsson A., et al. . (2010). Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. EMBO J. 29, 546–558. 10.1038/emboj.2009.363 PubMed DOI PMC

Brady S. M., Orlando D. A., Lee J. Y., Wang J. Y., Koch J., Dinneny J. R., et al. . (2007). A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801–806. 10.1126/science.1146265 PubMed DOI

Brito de Souza L., Pinto da Silva L. L., Jamur M. C., Oliver C. (2014). Phospholipase D is involved in the formation of Golgi associated clathrin coated vesicles in human parotid duct cells. PLoS ONE 9:91868. 10.1371/journal.pone.0091868 PubMed DOI PMC

Chernomordik L. V., Kozlov M. M. (2003). Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207. 10.1146/annurev.biochem.72.121801.161504 PubMed DOI

Choudhury S. R., Pandey S. (2016). The role of PLDα1 in providing specificity to signal-response coupling by heterotrimeric G-protein components in Arabidopsis. Plant J. 86, 50–61. 10.1111/tpj.13151 PubMed DOI

Choudhury S. R., Pandey S. (2017). Phosphatidic acid binding inhibits RGS1 activity to affect specific signaling pathways in Arabidopsis. Plant J. 90, 466–477. 10.1111/tpj.13503 PubMed DOI

Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743. 10.1046/j.1365-313x.1998.00343.x PubMed DOI

Danquah A., de Zelicourt A., Colcombet J., Hirt H. (2014). The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. 32, 40–52. 10.1016/j.biotechadv.2013.09.006 PubMed DOI

Davis A. M., Hall A., Millar A. J., Darrah C., Davis S. J. (2009). Protocol: streamlined sub-protocols for floral-dip transformation and selection of transformants in Arabidopsis thaliana. Plant Methods 5:3. 10.1186/1746-4811-5-3 PubMed DOI PMC

Dhonukshe P., Laxalt A. M., Goedhart J., Gadella T. W., Munnik T. (2003). Phospholipase d activation correlates with microtubule reorganization in living plant cells. Plant Cell 15, 2666–2679. 10.1105/tpc.014977 PubMed DOI PMC

Donaldson J. G. (2009). Phospholipase D in endocytosis and endosomal recycling pathways. Biochim. Biophys. Acta 1791, 845–849. 10.1016/j.bbalip.2009.05.011 PubMed DOI PMC

El Kasmi F., Krause C., Hiller U., Stierhof Y. D., Mayer U., Conner L., et al. . (2013). SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Mol. Biol. Cell 24, 1593–1601. 10.1091/mbc.E13-02-0074 PubMed DOI PMC

Fan L., Zheng S., Wang X. (1997). Antisense suppression of phospholipase D α retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9, 2183–2196. 10.1105/tpc.9.12.2183 PubMed DOI PMC

Fan L., Zheng S., Cui D., Wang X. (1999). Subcellular distribution and tissue expression of phospholipase Dα, Dβ, and Dγ in Arabidopsis. Plant Phys. 119, 1371–1378. 10.1104/pp.119.4.1371 PubMed DOI PMC

Gardiner J. C., Harper J. D., Weerakoon N. D., Collings D. A., Ritchie S., Gilroy S., et al. . (2001). A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13, 2143–2158. 10.1105/tpc.13.9.2143 PubMed DOI PMC

Guo L., Mishra G., Markham J. E., Li M., Tawfall A., Welti R., et al. . (2012). Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J. Biol. Chem. 287, 8286–8296. 10.1074/jbc.M111.274274 PubMed DOI PMC

Hashimoto T., Kato T. (2006). Cortical control of plant microtubules. Curr. Opin. Plant. Biol. 9, 5–11. 10.1016/j.pbi.2005.11.005 PubMed DOI

Ho A. Y. Y., Day D. A., Brown M. H., Marc J. (2009). Arabidopsis phospholipase Dδ as an initiator of cytoskeleton-mediated signalling to fundamental cellular processes. Funct. Plant Biol. 36, 190–198. 10.1071/FP08222 PubMed DOI

Hong Y., Zhao J., Guo L., Kim S. C., Deng X., Wang G., et al. . (2016). Plant phospholipases D and C and their diverse functions in stress responses. Prog. Lipid Res. 62, 55–74. 10.1016/j.plipres.2016.01.002 PubMed DOI

Ito E., Fujimoto M., Ebine K., Uemura T., Ueda T., Nakano A. (2012). Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. Plant J. 69, 204–216. 10.1111/j.1365-313X.2011.04782.x PubMed DOI

Jiang Y., Wu K., Lin F., Qu Y., Liu X., Zhang Q. (2014). Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. Planta 239, 565–575. 10.1007/s00425-013-1999-5 PubMed DOI

Karahara I., Suda J., Tahara H., Yokota E., Shimmen T., Misaki K., et al. . (2009). The preprophase band is a localized center of clathrin-mediated endocytosis in late prophase cells of the onion cotyledon epidermis. Plant J. 57, 819–831. 10.1111/j.1365-313X.2008.03725.x PubMed DOI

Komis G., Mistrik M., Šamajová O., Ovečka M., Bartek J., Šamaj J. (2015). Superresolution live imaging of plant cells using structured illumination microscopy. Nat. Protoc. 10, 1248–1263. 10.1038/nprot.2015.083 PubMed DOI

Liu S., Wilson K. A., Rice-Stitt T., Neiman A. M., McNew J. A. (2007). In vitro fusion catalyzed by the sporulation-specific t-SNARE light-chain Spo20p is stimulated by phosphatidic acid. Traffic 8, 1630–1643. 10.1111/j.1600-0854.2007.00628.x PubMed DOI

Manifava M., Thuring J. W., Lim Z. Y., Packman L., Holmes A. B., Ktistakis N. T. (2001). Differential binding of traffic-related proteins to phosphatidic acid- or phosphatidylinositol (4,5)- bisphosphate-coupled affinity reagents. J. Biol. Chem. 276, 8987–8994. 10.1074/jbc.M010308200 PubMed DOI

Marks M. D., Wenger J. P., Gilding E., Jilk R., Dixon R. A. (2009). Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development. Mol. Plant 2, 803–822. 10.1093/mp/ssp037 PubMed DOI PMC

McLoughlin F., Arisz S. A., Dekker H. L., Kramer G., de Koster C. G., Haring M. A., et al. . (2013). Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem. J. 450, 573–581. 10.1042/BJ20121639 PubMed DOI

McMahon H. T., Gallop J. L. (2005). Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596. 10.1038/nature04396 PubMed DOI

Miart F., Desprez T., Biot E., Morin H., Belcram K., Höfte H., et al. . (2014). Spatio-temporal analysis of cellulose synthesis during cell plate formation in Arabidopsis. Plant J. 77, 71–84. 10.1111/tpj.12362 PubMed DOI

Munnik T., Musgrave A. (2001). Phospholipid signaling in plants: holding on to Phospholipase D. Sci. STKE. 2001:42. 10.1126/stke.2001.111.pe42 PubMed DOI

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497. 10.1111/j.1399-3054.1962.tb08052.x DOI

Murata T., Sano T., Sasabe M., Nonaka S., Higashiyama T., Hasezawa S., et al. . (2013). Mechanism of microtubule array expansion in the cytokinetic phragmoplast. Nat. Commun. 4, 1967. 10.1038/ncomms2967 PubMed DOI PMC

Nakanishi H., Morishita M., Schwartz C. L., Coluccio A., Engebrecht J., Neiman A. M. (2006). Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast. J. Cell. Sci. 119, 1406–1415. 10.1242/jcs.02841 PubMed DOI

Ovečka M., Vaškebová L., Komis G., Luptovčiak I., Smertenko A., Šamaj J. (2015). Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat. Protoc. 10, 1234–1247. 10.1038/nprot.2015.081 PubMed DOI

Pleskot R., Li J., Žárský V., Potocký M., Staiger C. J. (2013). Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci. 18, 496–504. 10.1016/j.tplants.2013.04.005 PubMed DOI

Pleskot R., Pejchar P., Staiger C. J., Potocký M. (2014). When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules. Front. Plant Sci. 5:5 10.3389/fpls.2014.00005 PubMed DOI PMC

Potocký M., Pleskot R., Pejchar P., Vitale N., Kost B., Žárský V. (2014). Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. New Phytol. 203, 483–494. 10.1111/nph.12814 PubMed DOI

Putta P., Rankenberg J., Korver R. A., van Wijk R., Munnik T., Testerink C., et al. . (2016). Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. Biochim. Biophys. Acta 1858, 2709–2716. 10.1016/j.bbamem.2016.07.014 PubMed DOI

Qin C., Wang X. (2002). The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLD zeta 1 with distinct regulatory domains. Plant Physiol. 128, 1057–1068. 10.1104/pp.010928 PubMed DOI PMC

Qin W., Pappan K., Wang X. (1997). Cloning of PLDgamma and regulation of plant PLDγ, -β and -α by polyphosphoinositides and calcium. J. Biol. Chem. 272, 28267–28273. 10.1074/jbc.272.45.28267 PubMed DOI

Rego E. H., Shao L., Macklin J. J., Winoto L., Johansson G. A., Kamps-Hughes N., et al. . (2012). Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. U.S.A. 109, 135–143. 10.1073/pnas.1107547108 PubMed DOI PMC

Roth M. G. (2008). Molecular mechanisms of PLD function in membrane traffic. Traffic 9, 1233–1239. 10.1111/j.1600-0854.2008.00742.x PubMed DOI

Rudge S. A., Morris A. J., Engebrecht J. (1998). Relocalization of phospholipase D activity mediates membrane formation during meiosis. J. Cell Biol. 140, 81–90. 10.1083/jcb.140.1.81 PubMed DOI PMC

Šamajová O., Komis G., Šamaj J. (2014). Immunofluorescent localization of MAPKs and colocalization with microtubules in Arabidopsis seedling whole-mount probes. Methods Mol. Biol. 1171, 107–115. 10.1007/978-1-4939-0922-3_9 PubMed DOI

Seguí-Simarro J. M., Austin J. R., White E. A., Staehelin L. A. (2004). Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16, 836–856. 10.1105/tpc.017749 PubMed DOI PMC

Smertenko A., Assaad F., Baluška F., Bezanilla M., Buschmann H., Drakakaki G., et al. . (2017). Plant cytokinesis: terminology for structures and processes. Trends Cell Biol. 27, 885–894. 10.1016/j.tcb.2017.08.008 PubMed DOI

Takáč T., Šamajová O., Pechan T., Luptovčiak I., Šamaj J. (2017). Feedback microtubule control and microtubule-actin cross-talk in Arabidopsis revealed by integrative proteomic and cell biology analysis of KATANIN1 mutants. Mol. Cell. Proteomics 16, 1591–1609. 10.1074/mcp.M117.068015 PubMed DOI PMC

Tang K., Liu J. Y. (2017). Molecular characterization of GhPLDα1 and its relationship with secondary cell wall thickening in cotton fibers. Acta Biochim. Biophys. Sin. 49, 33–43. 10.1093/abbs/gmw113 PubMed DOI

Teh O. K., Shimono Y., Shirakawa M., Fukao Y., Tamura K., Shimada T., et al. . (2013). The AP-1 μ adaptin is required for KNOLLE localization at the cell plate to mediate cytokinesis in Arabidopsis. Plant Cell Physiol. 54, 838–847. 10.1093/pcp/pct048 PubMed DOI

Uraji M., Katagiri T., Okuma E., Ye W., Hossain M. A., Masuda C., et al. . (2012). Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 159, 450–460. 10.1104/pp.112.195578 PubMed DOI PMC

van Oostende-Triplet C., Guillet D., Triplet T., Pandzic E., Wiseman P. W., Geitmann A. (2017). Vesicle dynamics during plant cell cytokinesis reveals distinct developmental phases. Plant Physiol. 174, 1544–1558. 10.1104/pp.17.00343 PubMed DOI PMC

Wang C., Zien C. A., Afitlhile M., Welti R., Hildebrand D. F., Wang X. (2000). Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12, 2237–2246. 10.1105/tpc.12.11.2237 PubMed DOI PMC

Wang G., Ryu S., Wang X. (2012). Plant phospholipases: an overview. Methods Mol. Biol. 861, 123–137. 10.1007/978-1-61779-600-5_8 PubMed DOI

Wang X. (2005). Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol. 139, 566–573. 10.1104/pp.105.068809 PubMed DOI PMC

Wymer C., Lloyd C. (1996). Dynamic microtubules: implications for cell wall patterns. Trends Plant Sci. 7, 222–228. 10.1016/S1360-1385(96)86899-0 DOI

Yamaoka S., Shimono Y., Shirakawa M., Fukao Y., Kawase T., Hatsugai N., et al. . (2013). Identification and dynamics of Arabidopsis adaptor protein-2 complex and its involvement in floral organ development. Plant Cell 25, 2958–2969. 10.1105/tpc.113.114082 PubMed DOI PMC

Yang Y., Costa A., Leonhardt N., Siegel R. S., Schroeder J. I. (2008). Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4:6. 10.1186/1746-4811-4-6 PubMed DOI PMC

Žárský V., Cvrčková F., Potocký M., Hála M. (2009). Exocytosis and cell polarity in plants – exocyst and recycling domains. New Phytol. 183, 255–272. 10.1111/j.1469-8137.2009.02880.x PubMed DOI

Zhang Q., Lin F., Mao T., Nie J., Yan M., Yuan M., et al. . (2012). Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24, 4555–4576. 10.1105/tpc.112.104182 PubMed DOI PMC

Zhang Q., Qu Y., Wang Q., Song P., Wang P., Jia Q., et al. (2017a). Arabidopsis phospholipase Dα 1-derived phosphatidic acid regulates microtubule organization and cell development under microtubule-interacting drugs treatment. J. Plant Res. 130, 193–202. 10.1007/s10265-016-0870-8 PubMed DOI

Zhang Q., Song P., Qu Y., Wang P., Jia Q., Guo L., et al. . (2017b). Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in Arabidopsis. Plant Cell Environ. 40, 2220–2235. 10.1111/pce.13023 PubMed DOI

Zhang W., Qin C., Zhao J., Wang X. (2004). Phospholipase D α1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. U.S.A. 101, 9508–9513. 10.1073/pnas.0402112101 PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations

. 2022 Mar 17 ; 23 (6) : . [epub] 20220317

Imaging plant cells and organs with light-sheet and super-resolution microscopy

. 2022 Feb 04 ; 188 (2) : 683-702.

Spatiotemporal Pattern of Ectopic Cell Divisions Contribute to Mis-Shaped Phenotype of Primary and Lateral Roots of katanin1 Mutant

. 2020 ; 11 () : 734. [epub] 20200609

Secretion of Phospholipase Dδ Functions as a Regulatory Mechanism in Plant Innate Immunity

. 2019 Dec ; 31 (12) : 3015-3032. [epub] 20191009

Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants

. 2019 ; 10 () : 362. [epub] 20190405

Biochemical and Genetic Interactions of Phospholipase D Alpha 1 and Mitogen-Activated Protein Kinase 3 Affect Arabidopsis Stress Response

. 2019 ; 10 () : 275. [epub] 20190318

Proteomic Analysis of Arabidopsis pldα1 Mutants Revealed an Important Role of Phospholipase D Alpha 1 in Chloroplast Biogenesis

. 2019 ; 10 () : 89. [epub] 20190218

Shot-Gun Proteomic Analysis on Roots of Arabidopsis pldα1 Mutants Suggesting the Involvement of PLDα1 in Mitochondrial Protein Import, Vesicular Trafficking and Glucosinolate Biosynthesis

. 2018 Dec 26 ; 20 (1) : . [epub] 20181226

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...