Early and Non-invasive Diagnosis of Aspergillosis Revealed by Infection Kinetics Monitored in a Rat Model
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
30349512
PubMed Central
PMC6186828
DOI
10.3389/fmicb.2018.02356
Knihovny.cz E-resources
- Keywords
- Aspergillus fumigatus, PET, liquid chromatography, mass spectrometry, siderophores,
- Publication type
- Journal Article MeSH
Background: Aspergillus fumigatus is a ubiquitous saprophytic airborne fungus responsible for more than one million deaths every year. The siderophores of A. fumigatus represent important virulence factors that contribute to the microbiome-metabolome dialog in a host. From a diagnostic point of view, the monitoring of Aspergillus secondary metabolites in urine of a host is promising due to the non-invasiveness, rapidity, sensitivity, and potential for standardization. Methods: Using a model of experimental aspergillosis in immunocompromised Lewis rats, the fungal siderophores ferricrocin (FC) and triacetylfusarinine C (TAFC) were monitored in rat urine before and after lung inoculation with A. fumigatus conidia. Molecular biomarkers in high-dose (HD) and low-dose (LD) infection models were separated using high performance liquid chromatography (HPLC) and were detected by mass spectrometry (MS). In the current work, we corroborated the in vivo MS infection kinetics data with micro-positron emission tomography/computed tomography (μPET/CT) kinetics utilizing 68Ga-labeled TAFC. Results: In the HD model, the initial FC signal reflecting aspergillosis appeared as early as 4 h post-infection. The results from seven biological replicates showed exponentially increasing metabolite profiles over time. In A. fumigatus, TAFC was found to be a less produced biomarker that exhibited a kinetic profile identical to that of FC. The amount of siderophores contributed by the inoculating conidia was negligible and undetectable in the HD and LD models, respectively. In the μPET/CT scans, the first detectable signal in HD model was recorded 48 h post-infection. Regarding the MS assay, among nine biological replicates in the LD model, three animals did not develop any infection, while one animal experienced an exponential increase of metabolites and died on day 6 post-infection. All remaining animals had constant or random FC levels and exhibited few or no symptoms to the experiment termination. In the LD model, the TAFC concentration was not statistically significant, while the μPET/CT scan was positive as early as 6 days post-infection. Conclusion: Siderophore detection in rat urine by MS represents an early and non-invasive tool for diagnosing aspergillosis caused by A. fumigatus. μPET/CT imaging further determines the infection location in vivo and allows the visualization of the infection progression over time.
See more in PubMed
Carroll C. S., Amankwa L. N., Pinto L. J., Fuller J. D., Moore M. M. (2016). Detection of a serum siderophore by LC-MS/MS as a potential biomarker of invasive Aspergillosis. PLoS One 11:e0151260. 10.1371/journal.pone.0151260 PubMed DOI PMC
Davies G., Rolle A. M., Maurer A., Spycher P. R., Schillinger C., Solouk-Saran D., et al. (2017). Towards translational immunoPET/MR imaging of invasive pulmonary Aspergillosis: the humanised monoclonal antibody JF5 detects Aspergillus lung infections in vivo. Theranostics 7 3398–3414. 10.7150/thno.20919 PubMed DOI PMC
Goncalves S. M., Lagrou K., Duarte-Oliveira C., Maertens J. A., Cunha C., Carvalho A. (2017a). The microbiome-metabolome crosstalk in the pathogenesis of respiratory fungal diseases. Virulence 8 673–684. 10.1080/21505594.2016.1257458 PubMed DOI PMC
Goncalves S. M., Lagrou K., Rodrigues C. S., Campos C. F., Bernal-Martinez L., Rodrigues F., et al. (2017b). Evaluation of bronchoalveolar lavage fluid cytokines as biomarkers for invasive pulmonary Aspergillosis in at-risk patients. Front. Microbiol. 8:2362. 10.3389/fmicb.2017.02362 PubMed DOI PMC
Haas H., Eisendle M., Turgeon B. G. (2008). Siderophores in fungal physiology and virulence. Annu. Rev. Phytopathol. 46 149–187. PubMed
Haas H., Petrik M., Decristoforo C. (2015). An iron-mimicking, Trojan horse-entering fungi–has the time come for molecular imaging of fungal infections? PLoS Pathog. 11:e1004568. 10.1371/journal.ppat.1004568 PubMed DOI PMC
Havlicek V., Lemr K., Schug K. A. (2013). Current trends in microbial diagnostics based on mass spectrometry. Anal. Chem. 85 790–797. 10.1021/ac3031866 PubMed DOI
Koo S., Thomas H. R., Daniels S. D., Lynch R. C., Fortier S. M., Shea M. M., et al. (2014). A breath fungal secondary metabolite signature to diagnose invasive Aspergillosis. Clin. Infect. Dis. 59 1733–1740. 10.1093/cid/ciu725 PubMed DOI PMC
Luptakova D., Pluhacek T., Petrik M., Novak J., Palyzova A., Sokolova L., et al. (2017). Non-invasive and invasive diagnoses of Aspergillosis in a rat model by mass spectrometry. Sci. Rep. 7:16523. 10.1038/s41598-017-16648-z PubMed DOI PMC
Moore C. B., Novak-Frazer L., Muldoon E., Dunn K. W., Masania R., Richardson M. D., et al. (2017). First isolation of the pan-azole-resistant Aspergillus fumigatus cyp51A TR46/Y121F/T289A mutant in a UK patient. Int. J. Antimicrob. Agents 49 512–514. 10.1016/j.ijantimicag.2017.01.004 PubMed DOI
Pappalardo L., Hoijemberg P., Pelczer I., Bailey T. (2014). NMR-Metabolomics study on falcons affected by Aspergillosis. Curr. Metabol. 2 155–161. 10.2174/2213235x02666140905232309 DOI
Petrik M., Franssen G. M., Haas H., Laverman P., Hortnagl C., Schrettl M., et al. (2012). Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur. J. Nucl. Med. Mol. Imaging 39 1175–1183. 10.1007/s00259-012-2110-3 PubMed DOI PMC
Petrik M., Haas H., Dobrozemsky G., Lass-Florl C., Helbok A., Blatzer M., et al. (2010). 68Ga-siderophores for PET imaging of invasive pulmonary Aspergillosis: proof of principle. J. Nucl. Med. 51 639–645. 10.2967/jnumed.109.072462 PubMed DOI PMC
Pluhacek T., Lemr K., Ghosh D., Milde D., Novak J., Havlicek V. (2016a). Characterization of microbial siderophores by mass spectrometry. Mass Spectrom. Rev. 35 35–47. 10.1002/mas.21461 PubMed DOI
Pluhacek T., Petrik M., Luptakova D., Benada O., Palyzova A., Lemr K., et al. (2016b). Aspergillus infection monitored by multimodal imaging in a rat model. Proteomics 16 1785–1792. 10.1002/pmic.201500487 PubMed DOI
Ramirez-Garcia A., Pellon A., Rementeria A., Buldain I., Barreto-Bergter E., Rollin-Pinheiro R., et al. (2018). Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med. Mycol. 56(Suppl. 1), 102–125. 10.1093/mmy/myx113 PubMed DOI
Savelieff M. G., Pappalardo L. (2017). Novel cutting-edge metabolite-based diagnostic tools for Aspergillosis. PLoS Pathog. 13:e1006486. 10.1371/journal.ppat.1006486 PubMed DOI PMC
Schalk I. J., Guillon L. (2013). Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44 1267–1277. 10.1007/s00726-013-1468-2 PubMed DOI
Schrettl M., Haas H. (2011). Iron homeostasis-Achilles’ heel of Aspergillus fumigatus? Curr. Opin. Microbiol. 14 400–405. 10.1016/j.mib.2011.06.002 PubMed DOI PMC
Szigeti Z. M., Talas L., Palicz Z., Szentesi P., Hargitai Z., Csernoch L., et al. (2018). Murine model to follow hyphal development in invasive pulmonary Aspergillosis. Appl. Microbiol. Biotechnol. 102 2817–2825. 10.1007/s00253-018-8800-4 PubMed DOI
Trevethan R. (2017). Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Front. Public Health 5:7. 10.3389/fpubh.2017.00307 PubMed DOI PMC
Ullmann A. J., Aguado J. M., Arikan-Akdagli S., Denning D. W., Groll A. H., Lagrou K., et al. (2018). Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 24(Suppl. 1), e1–e38. 10.1016/j.cmi.2018.01.002 PubMed DOI
Zhao Y., Nagasaki Y., Paderu P., Sugrue M. W., Leather H. L., Wingard J. R., et al. (2018). Applying host disease status biomarkers to therapeutic response monitoring in invasive Aspergillosis patients. Med. Mycol. 10.1093/mmy/myx164 [Epub ahead of print]. PubMed DOI
Radiotracer Development for Fungal-Specific Imaging: Past, Present, and Future
Current and Future Pathways in Aspergillus Diagnosis