Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
31717496
PubMed Central
PMC6895830
DOI
10.3390/genes10110915
PII: genes10110915
Knihovny.cz E-resources
- Keywords
- MeLiM, animal model, devitalization, genetics, melanoma, mutation, progression, spontaneous regression, swine,
- MeSH
- Melanoma, Cutaneous Malignant MeSH
- Melanoma genetics MeSH
- Swine, Miniature genetics MeSH
- Disease Models, Animal MeSH
- Skin Neoplasms genetics MeSH
- Swine genetics MeSH
- Disease Progression MeSH
- Neoplasms, Second Primary genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
National cancer databases document that melanoma is the most aggressive and deadly cutaneous malignancy with worldwide increasing incidence in the Caucasian population. Around 10% of melanomas occur in families. Several germline mutations were identified that might help to indicate individuals at risk for preventive interventions and early disease detection. More than 50% of sporadic melanomas carry mutations in Ras/Raf/mitogen-activated protein kinase (MAPK/MEK) pathway, which may represent aims of novel targeted therapies. Despite advances in targeted therapies and immunotherapies, the outcomes in metastatic tumor are still unsatisfactory. Here, we review animal models that help our understanding of melanoma development and treatment, including non-vertebrate, mouse, swine, and other mammal models, with an emphasis on those with spontaneously developing melanoma. Special attention is paid to the melanoma-bearing Libechov minipig (MeLiM). This original swine model of hereditary metastatic melanoma enables studying biological processes underlying melanoma progression, as well as spontaneous regression. Current histological, immunohistochemical, biochemical, genetic, hematological, immunological, and skin microbiome findings in the MeLiM model are summarized, together with development of new therapeutic approaches based on tumor devitalization. The ongoing study of molecular and immunological base of spontaneous regression in MeLiM model has potential to bring new knowledge of clinical importance.
See more in PubMed
Cummins D.L., Cummins J.M., Pantle H., Silverman M.A., Leonard A.L., Chanmugam A. Cutaneous Malignant Melanoma. Mayo Clin. Proc. 2006;81:500–507. doi: 10.4065/81.4.500. PubMed DOI
Lomas A., Leonardi Bee J., Bath Hextall F. A Systematic Review of Worldwide Incidence of Nonmelanoma Skin Cancer. Br. J. Dermatol. 2012;166:1069–1080. doi: 10.1111/j.1365-2133.2012.10830.x. PubMed DOI
Craythorne E., Al Niami F. Skin Cancer. Medicine (Baltimore) 2017;45:431–434. doi: 10.1016/j.mpmed.2017.04.003. DOI
Garcovich S., Colloca G., Sollena P., Andrea B., Balducci L., Cho W.C., Bernabei R., Peris K. Skin Cancer Epidemics in the Elderly as An Emerging Issue in Geriatric Oncology. Aging Dis. 2017;8:643–661. doi: 10.14336/AD.2017.0503. PubMed DOI PMC
Cichorek M., Wachulska M., Stasiewicz A., Tyminska A. Skin Melanocytes: Biology and Development. Postepy Dermatol. Alergol. 2013;30:30–41. doi: 10.5114/pdia.2013.33376. PubMed DOI PMC
McElearney S.T., Dengel L.T., Vaughters A.B.R., Patterson J.W., McGahren E.D., Slingluff C.L. Neonatal Congenital Malignant Melanoma with Lymph Node Metastasis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009;27:2726–2728. doi: 10.1200/JCO.2008.20.7258. PubMed DOI PMC
Perniciaro C. Dermatopathologic Variants of Malignant Melanoma. Mayo Clin. Proc. 1997;72:273–279. doi: 10.4065/72.3.273. PubMed DOI
O’Brien K., Bhatia A., Tsen F., Chen M., Wong A.K., Woodley D.T., Li W. Identification of the Critical Therapeutic Entity in Secreted Hsp90α that Promotes Wound Healing in Newly Re-Standardized Healthy and Diabetic Pig Models. PLoS ONE. 2014;9:e113956. doi: 10.1371/journal.pone.0113956. PubMed DOI PMC
Summerfield A., Meurens F., Ricklin M.E. The Immunology of the Porcine Skin and its Value as a Model for Human Skin. Mol. Immunol. 2015;66:14–21. doi: 10.1016/j.molimm.2014.10.023. PubMed DOI
Erdmann F., Lortet Tieulent J., Schuz J., Zeeb H., Greinert R., Breitbart E.W., Bray F. International Trends in the Incidence of Malignant Melanoma 1953–2008-Are Recent Generations at Higher or Lower Risk? Int. J. Cancer. 2013;132:385–400. doi: 10.1002/ijc.27616. PubMed DOI
Eggermont A.M., Spatz A., Robert C. Cutaneous Melanoma. Lancet. 2014;383:816–827. doi: 10.1016/S0140-6736(13)60802-8. PubMed DOI
Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551. PubMed DOI
Rastrelli M., Tropea S., Rossi C.R., Alaibac M. Melanoma: Epidemiology, Risk Factors, Pathogenesis, Diagnosis and Classification. Vivo Athens Greece. 2014;28:1005–1011. PubMed
Berwick M., Buller D.B., Cust A., Gallagher R., Lee T.K., Meyskens F., Pandey S., Thomas N.E., Veierod M.B., Ward S. Melanoma Epidemiology and Prevention. Cancer Treat. Res. 2016;167:17–49. PubMed
Leachman S.A., Lucero O.M., Sampson J.E., Cassidy P., Bruno W., Queirolo P., Ghiorzo P. Identification, Genetic Testing, and Management of Hereditary Melanoma. Cancer Metastasis Rev. 2017;36:77–90. doi: 10.1007/s10555-017-9661-5. PubMed DOI PMC
Duggleby W.F., Stoll H., Priore R.L., Greenwald P., Graham S. A Genetic Analysis of Melanoma--Polygenic Inheritance as a Threshold Trait. Am. J. Epidemiol. 1981;114:63–72. doi: 10.1093/oxfordjournals.aje.a113175. PubMed DOI
Dracopoli N.C., Alhadeff B., Houghton A.N., Old L.J. Loss of Heterozygosity at Autosomal and X-Linked Loci During Tumor Progression in a Patient with Melanoma. Cancer Res. 1987;47:3995–4000. PubMed
Fountain J.W., Karayiorgou M., Ernstoff M.S., Kirkwood J.M., Vlock D.R., Titus-Ernstoff L., Bouchard B., Vijayasaradhi S., Houghton A.N., Lahti J. Homozygous Deletions within Human Chromosome Band 9p21 in Melanoma. Proc. Natl. Acad. Sci. USA. 1992;89:10557–10561. doi: 10.1073/pnas.89.21.10557. PubMed DOI PMC
Nancarrow D.J., Mann G.J., Holland E.A., Walker G.J., Beaton S.C., Walters M.K., Luxford C., Palmer J.M., Donald J.A., Weber J.L. Confirmation of Chromosome 9p Linkage in Familial Melanoma. Am. J. Hum. Genet. 1993;53:936–942. PubMed PMC
Kamb A., Shattuck Eidens D., Eeles R., Liu Q., Gruis N.A., Ding W., Hussey C., Tran T., Miki Y., Weaver Feldhaus J. Analysis of the p16 Gene (CDKN2) as a Candidate for the Chromosome 9p Melanoma Susceptibility Locus. Nat. Genet. 1994;8:23–26. doi: 10.1038/ng0994-22. PubMed DOI
Borg A., Johannsson U., Johannsson O., Hakansson S., Westerdahl J., Masback A., Olsson H., Ingvar C. Novel Germline p16 Mutation in Familial Malignant Melanoma in Southern Sweden. Cancer Res. 1996;56:2497–2500. PubMed
FitzGerald M.G., Harkin D.P., Silva Arrieta S., MacDonald D.J., Lucchina L.C., Unsal H., O’Neill E., Koh J., Finkelstein D.M., Isselbacher K.J., et al. Prevalence of Germ-Line Mutations in p16, p19ARF, and CDK4 in Familial Melanoma: Analysis of a Clinic-Based Population. Proc. Natl. Acad. Sci. USA. 1996;93:8541–8545. doi: 10.1073/pnas.93.16.8541. PubMed DOI PMC
Harland M., Meloni R., Gruis N., Pinney E., Brookes S., Spurr N.K., Frischauf A.M., Bataille V., Peters G., Cuzick J., et al. Germline Mutations of the CDKN2 Gene in UK Melanoma Families. Hum. Mol. Genet. 1997;6:2061–2067. doi: 10.1093/hmg/6.12.2061. PubMed DOI
Soufir N., Avril M.F., Chompret A., Demenais F., Bombled J., Spatz A., Stoppa Lyonnet D., Benard J., Bressac De Paillerets B. Prevalence of p16 and CDK4 Germline Mutations in 48 Melanoma-Prone Families in France. The French Familial Melanoma Study Group. Hum. Mol. Genet. 1998;7:209–216. doi: 10.1093/hmg/7.2.209. PubMed DOI
Aitken J., Welch J., Duffy D., Milligan A., Green A., Martin N., Hayward N. CDKN2A Variants in a Population-Based Sample of Queensland Families with Melanoma. J. Natl. Cancer Inst. 1999;91:446–452. doi: 10.1093/jnci/91.5.446. PubMed DOI
Quelle D.E., Zindy F., Ashmun R.A., Sherr C.J. Alternative Reading Frames of the INK4a Tumor Suppressor Gene Encode two Unrelated Proteins Capable of Inducing Cell Cycle Arrest. Cell. 1995;83:993–1000. PubMed
Stott F.J., Bates S., James M.C., McConnell B.B., Starborg M., Brookes S., Palmero I., Ryan K., Hara E., Vousden K.H., et al. The Alternative Product from the Human CDKN2A Locus, p14(ARF), Participates in a Regulatory Feedback Loop with p53 and MDM2. EMBO J. 1998;17:5001–5014. doi: 10.1093/emboj/17.17.5001. PubMed DOI PMC
Goldstein A.M., Chan M., Harland M., Hayward N.K., Demenais F., Bishop D.T., Azizi E., Bergman W., Bianchi Scarra G., Bruno W., et al. Features Associated with Germline CDKN2A Mutations: A GenoMEL Study of Melanoma-Prone Families from Three Continents. J. Med. Genet. 2007;44:99–106. doi: 10.1136/jmg.2006.043802. PubMed DOI PMC
Rossi M., Pellegrini C., Cardelli L., Ciciarelli V., Di Nardo L., Fargnoli M.C. Familial Melanoma: Diagnostic and Management Implications. Dermatol. Pract. Concept. 2019;9:10–16. doi: 10.5826/dpc.0901a03. PubMed DOI PMC
Harland M., Cust A.E., Badenas C., Chang Y.M., Holland E.A., Aguilera P., Aitken J.F., Armstrong B.K., Barrett J.H., Carrera C., et al. Prevalence and Predictors of Germline CDKN2A Mutations for Melanoma Cases from Australia, Spain and the United Kingdom. Hered. Cancer Clin. Pract. 2014;12:20. doi: 10.1186/1897-4287-12-20. PubMed DOI PMC
Wolfel T., Hauer M., Schneider J., Serrano M., Wolfel C., Klehmann Hieb E., De Plaen E., Hankeln T., Meyer Zum Buschenfelde K.H., Beach D. A p16INK4a-Insensitive CDK4 Mutant Targeted by Cytolytic T Lymphocytes in a Human Melanoma. Science. 1995;269:1281–1284. doi: 10.1126/science.7652577. PubMed DOI
Zuo L., Weger J., Yang Q., Goldstein A.M., Tucker M.A., Walker G.J., Hayward N., Dracopoli N.C. Germline Mutations in the p16INK4a Binding Domain of cdk4 in Familial Melanoma. Nat. Genet. 1996;12:97–99. doi: 10.1038/ng0196-97. PubMed DOI
Puntervoll H.E., Yang X.R., Vetti H.H., Bachmann I.M., Avril M.F., Benfodda M., Catricala C., Dalle S., Duval Modeste A.B., Ghiorzo P., et al. Melanoma Prone Families with CDK4 Germline Mutation: Phenotypic Profile and Associations with MC1R Variants. J. Med. Genet. 2013;50:264–270. doi: 10.1136/jmedgenet-2012-101455. PubMed DOI PMC
Harbour J.W., Onken M.D., Roberson E.D.O., Duan S., Cao L., Worley L.A., Council M.L., Matatall K.A., Helms C., Bowcock A.M. Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas. Science. 2010;330:1410–1413. doi: 10.1126/science.1194472. PubMed DOI PMC
Wiesner T., Obenauf A.C., Murali R., Fried I., Griewank K.G., Ulz P., Windpassinger C., Wackernagel W., Loy S., Wolf I., et al. Germline Mutations in BAP1 Predispose to Melanocytic Tumors. Nat. Genet. 2011;43:1018–1021. doi: 10.1038/ng.910. PubMed DOI PMC
Njauw C.N.J., Kim I., Piris A., Gabree M., Taylor M., Lane A.M., DeAngelis M.M., Gragoudas E., Duncan L.M., Tsao H. Germline BAP1 Inactivation is Preferentially Associated with Metastatic Ocular Melanoma and Cutaneous-Ocular Melanoma Families. PLoS ONE. 2012;7:e35295. doi: 10.1371/journal.pone.0035295. PubMed DOI PMC
Murali R., Wilmott J.S., Jakrot V., Al Ahmadie H.A., Wiesner T., McCarthy S.W., Thompson J.F., Scolyer R.A. BAP1 Expression in Cutaneous Melanoma: A Pilot Study. Pathol. J. PCPA. 2013;45:606–609. doi: 10.1097/PAT.0b013e3283653818. PubMed DOI
Ismail I.H., Davidson R., Gagne J.P., Xu Z.Z., Poirier G.G., Hendzel M.J. Germline Mutations in BAP1 Impair its Function in DNA Double-Strand Break Repair. Cancer Res. 2014;74:4282–4294. doi: 10.1158/0008-5472.CAN-13-3109. PubMed DOI
Soura E., Eliades P.J., Shannon K., Stratigos A.J., Tsao H. Hereditary Melanoma: Update on Syndromes and Management: Emerging Melanoma Cancer Complexes and Genetic Counseling. J. Am. Acad. Dermatol. 2016;74:411–420. doi: 10.1016/j.jaad.2015.08.037. PubMed DOI PMC
Horn S., Figl A., Rachakonda P.S., Fischer C., Sucker A., Gast A., Kadel S., Moll I., Nagore E., Hemminki K., et al. TERT Promoter Mutations in Familial and Sporadic Melanoma. Science. 2013;339:959–961. doi: 10.1126/science.1230062. PubMed DOI
Robles Espinoza C.D., Harland M., Ramsay A.J., Aoude L.G., Quesada V., Ding Z., Pooley K.A., Pritchard A.L., Tiffen J.C., Petljak M., et al. POT1 Loss-of-Function Variants Predispose to Familial Melanoma. Nat. Genet. 2014;46:478–481. doi: 10.1038/ng.2947. PubMed DOI PMC
Shi J., Yang X.R., Ballew B., Rotunno M., Calista D., Fargnoli M.C., Ghiorzo P., Bressac De Paillerets B., Nagore E., Avril M.F., et al. Rare Missense Variants in POT1 Predispose to Familial Cutaneous Malignant Melanoma. Nat. Genet. 2014;46:482–486. doi: 10.1038/ng.2941. PubMed DOI PMC
Potrony M., Puig Butille J.A., Ribera Sola M., Iyer V., Robles Espinoza C.D., Aguilera P., Carrera C., Malvehy J., Badenas C., Landi M.T., et al. POT1 Germline Mutations but Not TERT Promoter Mutations are Implicated in Melanoma Susceptibility in a Large Cohort of Spanish Melanoma Families. Br. J. Dermatol. 2019;181:105–113. doi: 10.1111/bjd.17443. PubMed DOI PMC
Aoude L.G., Pritchard A.L., Robles Espinoza C.D., Wadt K., Harland M., Choi J., Gartside M., Quesada V., Johansson P., Palmer J.M., et al. Nonsense Mutations in the Shelterin Complex Genes ACD and TERF2IP in Familial Melanoma. J. Natl. Cancer Inst. 2015;107:dju408. doi: 10.1093/jnci/dju408. PubMed DOI PMC
Hodgkinson C.A., Moore K.J., Nakayama A., Steingrímsson E., Copeland N.G., Jenkins N.A., Arnheiter H. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell. 1993;74:395–404. doi: 10.1016/0092-8674(93)90429-T. PubMed DOI
Yasumoto K., Yokoyama K., Shibata K., Tomita Y., Shibahara S. Microphthalmia Associated Transcription Factor as a Regulator for Melanocyte-Specific Transcription of the Human Tyrosinase Gene. Mol. Cell. Biol. 1994;14:8058–8070. doi: 10.1128/MCB.14.12.8058. PubMed DOI PMC
Dynek J.N., Chan S.M., Liu J., Zha J., Fairbrother W.J., Vucic D. Microphthalmia-Associated Transcription Factor is a Critical Transcriptional Regulator of Melanoma Inhibitor of Apoptosis in Melanomas. Cancer Res. 2008;68:3124–3132. doi: 10.1158/0008-5472.CAN-07-6622. PubMed DOI
Garraway L.A., Widlund H.R., Rubin M.A., Getz G., Berger A.J., Ramaswamy S., Beroukhim R., Milner D.A., Granter S.R., Du J., et al. Integrative Genomic Analyses Identify MITF as a Lineage Survival Oncogene Amplified in Malignant Melanoma. Nature. 2005;436:117–122. doi: 10.1038/nature03664. PubMed DOI
Bertolotto C., Lesueur F., Giuliano S., Strub T., De Lichy M., Bille K., Dessen P., D’Hayer B., Mohamdi H., Remenieras A., et al. A SUMOylation-Defective MITF Germline Mutation Predisposes to Melanoma and Renal Carcinoma. Nature. 2011;480:94–98. doi: 10.1038/nature10539. PubMed DOI
Palmer J.S., Duffy D.L., Box N.F., Aitken J.F., O’Gorman L.E., Green A.C., Hayward N.K., Martin N.G., Sturm R.A. Melanocortin-1 Receptor Polymorphisms and Risk of Melanoma: Is the Association Explained Solely by Pigmentation Phenotype? Am. J. Hum. Genet. 2000;66:176–186. doi: 10.1086/302711. PubMed DOI PMC
Kennedy C., Ter Huurne J., Berkhout M., Gruis N., Bastiaens M., Bergman W., Willemze R., Bavinck J.N. Melanocortin 1 Receptor (MC1R) Gene Variants are Associated with an Increased Risk for Cutaneous Melanoma which is Largely Independent of Skin Type and Hair Color. J. Invest. Dermatol. 2001;117:294–300. doi: 10.1046/j.0022-202x.2001.01421.x. PubMed DOI
Box N.F., Duffy D.L., Chen W., Stark M., Martin N.G., Sturm R.A., Hayward N.K. MC1R Genotype Modifies Risk of Melanoma in Families Segregating CDKN2A Mutations. Am. J. Hum. Genet. 2001;69:765–773. doi: 10.1086/323412. PubMed DOI PMC
Paolino G., Moliterni E., Corsetti P., Didona D., Bottoni U., Calvieri S., Mattozzi C. Vitamin D and Melanoma: State of the Art and Possible Therapeutic Uses. G. Ital. Dermatol. E Venereol. Organo Uff. Soc. Ital. Dermatol. E Sifilogr. 2019;154:64–71. doi: 10.23736/S0392-0488.17.05801-1. PubMed DOI
Slominski A.T., Brozyna A.A., Zmijewski M.A., Jozwicki W., Jetten A.M., Mason R.S., Tuckey R.C., Elmets C.A. Vitamin D Signaling and Melanoma: Role of Vitamin D and its Receptors in Melanoma Progression and Management. Lab. Investig. J. Tech. Methods Pathol. 2017;97:706–724. doi: 10.1038/labinvest.2017.3. PubMed DOI PMC
Hutchinson P.E., Osborne J.E., Lear J.T., Smith A.G., Bowers P.W., Morris P.N., Jones P.W., York C., Strange R.C., Fryer A.A. Vitamin D Receptor Polymorphisms are Associated with Altered Prognosis in Patients with Malignant Melanoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2000;6:498–504. PubMed
Shahbazi M., Pravica V., Nasreen N., Fakhoury H., Fryer A.A., Strange R.C., Hutchinson P.E., Osborne J.E., Lear J.T., Smith A.G., et al. Association between Functional Polymorphism in EGF Gene and Malignant Melanoma. Lancet Lond. Engl. 2002;359:397–401. doi: 10.1016/S0140-6736(02)07600-6. PubMed DOI
Hayward N.K. Genetics of Melanoma Predisposition. Oncogene. 2003;22:3053–3062. doi: 10.1038/sj.onc.1206445. PubMed DOI
Fargnoli M.C., Argenziano G., Zalaudek I., Peris K. High-And Low-Penetrance Cutaneous Melanoma Susceptibility Genes. Expert Rev. Anticancer Ther. 2006;6:657–670. doi: 10.1586/14737140.6.5.657. PubMed DOI
Aoude L.G., Wadt K.A.W., Pritchard A.L., Hayward N.K. Genetics of Familial Melanoma: 20 Years after CDKN2A. Pigment Cell Melanoma Res. 2015;28:148–160. doi: 10.1111/pcmr.12333. PubMed DOI
Bennett D.C. Genetics of Melanoma Progression: The Rise and Fall of Cell Senescence. Pigment Cell Melanoma Res. 2016;29:122–140. doi: 10.1111/pcmr.12422. PubMed DOI
Roberts M.R., Asgari M.M., Toland A.E. Genome-Wide Association Studies and Polygenic Risk Scores for Skin Cancer: Clinically Useful Yet? Br. J. Dermatol. 2019 doi: 10.1111/bjd.17917. PubMed DOI PMC
Pho L.N., Leachman S.A. Genetics of Pigmentation and Melanoma Predisposition. G. Ital. Dermatol. E Venereol. Organo Uff. Soc. Ital. Dermatol. E Sifilogr. 2010;145:37–45. PubMed
Scherer D., Kumar R. Genetics of Pigmentation in Skin Cancer-A Review. Mutat. Res. 2010;705:141–153. doi: 10.1016/j.mrrev.2010.06.002. PubMed DOI
Ritterhouse L.L., Barletta J.A. BRAF V600E Mutation-Specific Antibody: A Review. Semin. Diagn. Pathol. 2015;32:400–408. doi: 10.1053/j.semdp.2015.02.010. PubMed DOI
Kunz M. Oncogenes in Melanoma: An Update. Eur. J. Cell Biol. 2014;93:1–10. doi: 10.1016/j.ejcb.2013.12.002. PubMed DOI
Reddy B.Y., Miller D.M., Tsao H. Somatic Driver Mutations in Melanoma. Cancer. 2017;123:2104–2117. doi: 10.1002/cncr.30593. PubMed DOI
Cicenas J., Tamosaitis L., Kvederaviciute K., Tarvydas R., Staniute G., Kalyan K., Meskinyte Kausiliene E., Stankevicius V., Valius M. KRAS, NRAS and BRAF Mutations in Colorectal Cancer and Melanoma. Med. Oncol. Northwood Lond. Engl. 2017;34:26. doi: 10.1007/s12032-016-0879-9. PubMed DOI
Rabbie R., Ferguson P., Molina Aguilar C., Adams D.J., Robles Espinoza C.D. Melanoma Subtypes: Genomic Profiles, Prognostic Molecular Markers and Therapeutic Possibilities. J. Pathol. 2019;247:539–551. doi: 10.1002/path.5213. PubMed DOI PMC
Cancer Genome Atlas Network Genomic Classification of Cutaneous Melanoma. Cell. 2015;161:1681–1696. doi: 10.1016/j.cell.2015.05.044. PubMed DOI PMC
Hartman R.I., Lin J.Y. Cutaneous Melanoma A Review in Detection, Staging, and Management. Hematol. Oncol. Clin. N. Am. 2019;33:25–38. doi: 10.1016/j.hoc.2018.09.005. PubMed DOI
Everson T.C. Spontaneous Regression of Cancer. Ann. N. Y. Acad. Sci. 1964;114:721–735. doi: 10.1111/j.1749-6632.1964.tb40991.x. PubMed DOI
Maio M. Melanoma as a Model Tumour for Immuno-Oncology. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012;23:viii10–viii14. doi: 10.1093/annonc/mds257. PubMed DOI
Kalialis L.V., Drzewiecki K.T., Klyver H. Spontaneous Regression of Metastases from Melanoma: Review of the Literature. Melanoma Res. 2009;19:275–282. doi: 10.1097/CMR.0b013e32832eabd5. PubMed DOI
Margaritescu I., Chiriţa A.D., Vasilescu F. Completely Regressed Primary Cutaneous Melanoma-Difficulties in Diagnosis and Classification. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2014;55:635–642. PubMed
Cole W.H., Everson T.C. Spontaneous Regression of Cancer: Preliminary Report. Ann. Surg. 1956;144:366–383. PubMed PMC
Bourneuf E. The MeLiM Minipig: An Original Spontaneous Model to Explore Cutaneous Melanoma Genetic Basis. Front. Genet. 2017;8:146. doi: 10.3389/fgene.2017.00146. PubMed DOI PMC
Cervinkova M., Kucerova P., Cizkova J. Spontaneous Regression of Malignant Melanoma-Is it Based on the Interplay between Host Immune System and Melanoma Antigens? Anticancer. Drugs. 2017;28:819–830. doi: 10.1097/CAD.0000000000000526. PubMed DOI
Ribero S., Moscarella E., Ferrara G., Piana S., Argenziano G., Longo C. Regression in Cutaneous Melanoma: A Comprehensive Review from Diagnosis to Prognosis. J. Eur. Acad. Dermatol. Venereol. JEADV. 2016;30:2030–2037. doi: 10.1111/jdv.13815. PubMed DOI
Kaur C., Thomas R.J., Desai N., Green M.A., Lovell D., Powell B.W.E.M., Cook M.G. The Correlation of Regression in Primary Melanoma with sentinel Lymph Node Status. J. Clin. Pathol. 2008;61:297–300. doi: 10.1136/jcp.2007.049411. PubMed DOI
Crompton J.G., Gilbert E., Brady M.S. Clinical Implications of the Eighth Edition of the American Joint Committee on Cancer Melanoma Staging. J. Surg. Oncol. 2019;119:168–174. doi: 10.1002/jso.25343. PubMed DOI
Kozar I., Margue C., Rothengatter S., Haan C., Kreis S. Many Ways to Resistance: How Melanoma Cells Evade Targeted Therapies. Biochim. Biophys. Acta Rev. Cancer. 2019;1871:313–322. doi: 10.1016/j.bbcan.2019.02.002. PubMed DOI
Lorentzen H.F. Targeted Therapy for Malignant Melanoma. Curr. Opin. Pharmacol. 2019;46:116–121. doi: 10.1016/j.coph.2019.05.010. PubMed DOI
Glitza Oliva I.C., Alqusairi R. Immunotherapy for Melanoma. Adv. Exp. Med. Biol. 2018;995:43–63. PubMed
Margolis N., Markovits E., Markel G. Reprogramming Lymphocytes for the Treatment of Melanoma: From Biology to Therapy. Adv. Drug Deliv. Rev. 2019;141:104–124. doi: 10.1016/j.addr.2019.06.005. PubMed DOI
Weiss S.A., Wolchok J.D., Sznol M. Immunotherapy of Melanoma: Facts and Hopes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019;25:5191–5201. doi: 10.1158/1078-0432.CCR-18-1550. PubMed DOI PMC
Yu C., Liu X., Yang J., Zhang M., Jin H., Ma X., Shi H. Combination of Immunotherapy With Targeted Therapy: Theory and Practice in Metastatic Melanoma. Front. Immunol. 2019;10:990. doi: 10.3389/fimmu.2019.00990. PubMed DOI PMC
Stern H.M., Zon L.I. Cancer Genetics and Drug Discovery in the Zebrafish. Nat. Rev. Cancer. 2003;3:533–539. doi: 10.1038/nrc1126. PubMed DOI
Schartl M., Walter R.B. Xiphophorus and Medaka Cancer Models. Adv. Exp. Med. Biol. 2016;916:531–552. PubMed
Bootorabi F., Manouchehri H., Changizi R., Barker H., Palazzo E., Saltari A., Parikka M., Pincelli C., Aspatwar A. Zebrafish as a Model Organism for the Development of Drugs for Skin Cancer. Int. J. Mol. Sci. 2017;18:1550. doi: 10.3390/ijms18071550. PubMed DOI PMC
Cagan R.L., Zon L.I., White R.M. Modeling Cancer with Flies and Fish. Dev. Cell. 2019;49:317–324. doi: 10.1016/j.devcel.2019.04.013. PubMed DOI PMC
Bennett D., Lyulcheva E., Cobbe N. Drosophila as a Potential Model for Ocular Tumors. Ocul. Oncol. Pathol. 2015;1:190–199. doi: 10.1159/000370155. PubMed DOI PMC
Hanratty W.P., Ryerse J.S. A Genetic Melanotic Neoplasm of Drosophila Melanogaster. Dev. Biol. 1981;83:238–249. doi: 10.1016/0012-1606(81)90470-X. PubMed DOI
Anders F. Contributions of the Gordon-Kosswig Melanoma System to the Present Concept of Neoplasia. Pigment Cell Res. 1991;4:7–29. doi: 10.1111/j.1600-0749.1991.tb00309.x. PubMed DOI
Setlow R.B., Woodhead A.D., Grist E. Animal Model for Ultraviolet Radiation-Induced Melanoma: Platyfish-Swordtail Hybrid. Proc. Natl. Acad. Sci. USA. 1989;86:8922–8926. doi: 10.1073/pnas.86.22.8922. PubMed DOI PMC
Wood S.R., Berwick M., Ley R.D., Walter R.B., Setlow R.B., Timmins G.S. UV Causation of Melanoma in Xiphophorus is Dominated by Melanin Photosensitized Oxidant Production. Proc. Natl. Acad. Sci. USA. 2006;103:4111–4115. doi: 10.1073/pnas.0511248103. PubMed DOI PMC
Wittbrodt J., Lammers R., Malitschek B., Ullrich A., Schartl M. The Xmrk Receptor Tyrosine Kinase is Activated in Xiphophorus Malignant Melanoma. EMBO J. 1992;11:4239–4246. doi: 10.1002/j.1460-2075.1992.tb05518.x. PubMed DOI PMC
Patton E.E., Widlund H.R., Kutok J.L., Kopani K.R., Amatruda J.F., Murphey R.D., Berghmans S., Mayhall E.A., Traver D., Fletcher C.D.M., et al. BRAF Mutations are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma. Curr. Biol. CB. 2005;15:249–254. doi: 10.1016/j.cub.2005.01.031. PubMed DOI
Dovey M., White R.M., Zon L.I. Oncogenic NRAS Cooperates with p53 Loss to Generate Melanoma in Zebrafish. Zebrafish. 2009;6:397–404. doi: 10.1089/zeb.2009.0606. PubMed DOI PMC
Santoriello C., Zon L.I. Hooked! Modeling Human Disease in Zebrafish. J. Clin. Invest. 2012;122:2337–2343. doi: 10.1172/JCI60434. PubMed DOI PMC
Scahill C.M., Digby Z., Sealy I.M., Wojciechowska S., White R.J., Collins J.E., Stemple D.L., Bartke T., Mathers M.E., Patton E.E., et al. Loss of the Chromatin Modifier Kdm2aa Causes BrafV600E-Independent Spontaneous Melanoma in Zebrafish. PLoS Genetics. 2017;13:e1006959. doi: 10.1371/journal.pgen.1006959. PubMed DOI PMC
Stoletov K., Klemke R. Catch of the Day: Zebrafish as a Human Cancer Model. Oncogene. 2008;27:4509–4520. doi: 10.1038/onc.2008.95. PubMed DOI
Ablain J., Zon L.I. Of Fish and Men: Using Zebrafish to Fight Human Diseases. Trends Cell Biol. 2013;23:584–586. doi: 10.1016/j.tcb.2013.09.009. PubMed DOI PMC
Haldi M., Ton C., Seng W.L., McGrath P. Human Melanoma Cells Transplanted into Zebrafish Proliferate, Migrate, Produce Melanin, form Masses and Stimulate Angiogenesis in Zebrafish. Angiogenesis. 2006;9:139–151. doi: 10.1007/s10456-006-9040-2. PubMed DOI
Heilmann S., Ratnakumar K., Langdon E., Kansler E., Kim I., Campbell N.R., Perry E., McMahon A., Kaufman C., Van Rooijen E., et al. A Quantitative System for Studying Metastasis Using Transparent Zebrafish. Cancer Res. 2015;75:4272–4282. doi: 10.1158/0008-5472.CAN-14-3319. PubMed DOI PMC
Schartl M., Wilde B., Laisney J.A.G.C., Taniguchi Y., Takeda S., Meierjohann S. A Mutated EGFR is Sufficient to Induce Malignant Melanoma with Genetic Background-Dependent Histopathologies. J. Invest. Dermatol. 2010;130:249–258. doi: 10.1038/jid.2009.213. PubMed DOI
Schartl M., Kneitz S., Wilde B., Wagner T., Henkel C.V., Spaink H.P., Meierjohann S. Conserved Expression Signatures between Medaka and Human Pigment Cell Tumors. PLoS ONE. 2012;7:e37880. doi: 10.1371/journal.pone.0037880. PubMed DOI PMC
Levine N., Queen L., Chalom A.A., Daniels L.J. Animal Model of Intracutaneous Melanoma. J. Invest. Dermatol. 1982;78:191–193. doi: 10.1111/1523-1747.ep12506432. PubMed DOI
Berkelhammer J., Oxenhandler R.W. Evaluation of Premalignant and Malignant Lesions During the Induction of Mouse Melanomas. Cancer Res. 1987;47:1251–1254. PubMed
Bradl M., Klein Szanto A., Porter S., Mintz B. Malignant Melanoma in Transgenic Mice. Proc. Natl. Acad. Sci. USA. 1991;88:164–168. doi: 10.1073/pnas.88.1.164. PubMed DOI PMC
Mintz B., Silvers W.K. Transgenic Mouse Model of Malignant Skin Melanoma. Proc. Natl. Acad. Sci. USA. 1993;90:8817–8821. doi: 10.1073/pnas.90.19.8817. PubMed DOI PMC
Gattoni Celli S., Byers R.H., Calorini L., Ferrone S. Organ-Specific Metastases in Melanoma: Experimental Animal Models. Pigment Cell Res. 1993;6:381–384. doi: 10.1111/j.1600-0749.1993.tb00619.x. PubMed DOI
Chen S., Zhu H., Wetzel W.J., Philbert M.A. Spontaneous Melanocytosis in Transgenic Mice. J. Invest. Dermatol. 1996;106:1145–1151. doi: 10.1111/1523-1747.ep12340194. PubMed DOI
Zhu H., Reuhl K., Zhang X., Botha R., Ryan K., Wei J., Chen S. Development of Heritable Melanoma in Transgenic Mice. J. Invest. Dermatol. 1998;110:247–252. doi: 10.1046/j.1523-1747.1998.00133.x. PubMed DOI
Bobek V., Kolostova K., Pinterova D., Kacprzak G., Adamiak J., Kolodziej J., Boubelik M., Kubecova M., Hoffman R.M. A Clinically Relevant, Syngeneic Model of Spontaneous, Highly Metastatic B16 Mouse Melanoma. Anticancer Res. 2010;5:4799–4803. PubMed
Saleh J. Murine Models of Melanoma. Pathol. Res. Pract. 2018;214:1235–1238. doi: 10.1016/j.prp.2018.07.008. PubMed DOI
Kuzu O.F., Nguyen F.D., Noory M.A., Sharma A. Current State of Animal (Mouse) Modeling in Melanoma Research. Cancer Growth Metastasis. 2015;8:81–94. doi: 10.4137/CGM.S21214. PubMed DOI PMC
Harris A.L., Joseph R.W., Copland J.A. Patient-Derived Tumor Xenograft Models for Melanoma Drug Discovery. Expert Opin. Drug Discov. 2016;11:895–906. doi: 10.1080/17460441.2016.1216968. PubMed DOI
Choi Y., Lee S., Kim K., Kim S.H., Chung Y.J., Lee C. Studying Cancer Immunotherapy Using Patient-Derived Xenografts (PDXs) in Humanized Mice. Exp. Mol. Med. 2018;50:1–9. doi: 10.1038/s12276-018-0115-0. PubMed DOI PMC
McKinney A.J., Holmen S.L. Animal Models of Melanoma: A Somatic Cell Gene Delivery Mouse Model Allows Rapid Evaluation of Genes Implicated in Human Melanoma. Chin. J. Cancer. 2011;30:153–162. doi: 10.5732/cjc.011.10007. PubMed DOI PMC
Perez Guijarro E., Day C.P., Merlino G., Zaidi M.R. Genetically Engineered Mouse Models of Melanoma. Cancer. 2017;123:2089–2103. doi: 10.1002/cncr.30684. PubMed DOI PMC
Niu Y., Liang S. Mammalian Models Based on RCAS-TVA Technique. Zool. Res. 2008;29:335–345.
Dankort D., Curley D.P., Cartlidge R.A., Nelson B., Karnezis A.N., Damsky W.E., You M.J., DePinho R.A., McMahon M., Bosenberg M. Braf(V600E) Cooperates with Pten Loss to Induce Metastatic Melanoma. Nat. Genet. 2009;41:544–552. doi: 10.1038/ng.356. PubMed DOI PMC
Klein Szanto A.J., Silvers W.K., Mintz B. Ultraviolet Radiation-Induced Malignant Skin Melanoma in Melanoma-Susceptible Transgenic Mice. Cancer Res. 1994;54:4569–4572. PubMed
Broome Powell M., Gause P.R., Hyman P., Gregus J., Lluria Prevatt M., Nagle R., Bowden G.T. Induction of Melanoma in TPras Transgenic Mice. Carcinogenesis. 1999;20:1747–1753. doi: 10.1093/carcin/20.9.1747. PubMed DOI
Ley R.D. Animal Models of Ultraviolet Radiation (UVR)-Induced Cutaneous Melanoma. Front. Biosci. J. Virtual Libr. 2002;7:d1531–d1534. PubMed
Larue L. Origin of Mouse Melanomas. J. Invest. Dermatol. 2012;132:2135–2136. doi: 10.1038/jid.2012.221. PubMed DOI
Goldschmidt M.H. Pigmented Lesions of the Skin. Clin. Dermatol. 1994;12:507–514. doi: 10.1016/0738-081X(94)90217-8. PubMed DOI
Modiano J.F., Ritt M.G., Wojcieszyn J. The Molecular Basis of Canine Melanoma: Pathogenesis and Trends in Diagnosis and Therapy. J. Vet. Intern. Med. 1999;13:163–174. doi: 10.1111/j.1939-1676.1999.tb02173.x. PubMed DOI
Prouteau A., Andre C. Canine Melanomas as Models for Human Melanomas: Clinical, Histological, and Genetic Comparison. Genes. 2019;10:501. doi: 10.3390/genes10070501. PubMed DOI PMC
Koenig A., Bianco S.R., Fosmire S., Wojcieszyn J., Modiano J.F. Expression and Significance of p53, rb, p21/waf-1, p16/ink-4a, and PTEN Tumor Suppressors in Canine Melanoma. Vet. Pathol. 2002;39:458–472. doi: 10.1354/vp.39-4-458. PubMed DOI
Gillard M., Cadieu E., De Brito C., Abadie J., Vergier B., Devauchelle P., Degorce F., Dreano S., Primot A., Dorso L., et al. Naturally Occurring Melanomas in Dogs as Models for Non-UV Pathways of Human Melanomas. Pigment Cell Melanoma Res. 2014;27:90–102. doi: 10.1111/pcmr.12170. PubMed DOI
Pisamai S., Rungsipipat A., Kalpravidh C., Suriyaphol G. Gene Expression Profiles of Cell Adhesion Molecules, Matrix Metalloproteinases and Their Tissue Inhibitors in Canine Oral Tumors. Res. Vet. Sci. 2017;113:94–100. doi: 10.1016/j.rvsc.2017.09.009. PubMed DOI
Brachelente C., Cappelli K., Capomaccio S., Porcellato I., Silvestri S., Bongiovanni L., De Maria R., Verini Supplizi A., Mechelli L., Sforna M. Transcriptome Analysis of Canine Cutaneous Melanoma and Melanocytoma Reveals a Modulation of Genes Regulating Extracellular Matrix Metabolism and Cell Cycle. Sci. Rep. 2017;7:6386. doi: 10.1038/s41598-017-06281-1. PubMed DOI PMC
Hendricks W.P.D., Zismann V., Sivaprakasam K., Legendre C., Poorman K., Tembe W., Perdigones N., Kiefer J., Liang W., DeLuca V., et al. Somatic Inactivating PTPRJ Mutations and Dysregulated Pathways Identified in Canine Malignant Melanoma by Integrated Comparative Genomic Analysis. PLoS Genetics. 2018;14 doi: 10.1371/journal.pgen.1007589. PubMed DOI PMC
Valentine B.A. Equine Melanocytic Tumors: A Retrospective Study of 53 Horses (1988 to 1991) J. Vet. Intern. Med. 1995;9:291–297. doi: 10.1111/j.1939-1676.1995.tb01087.x. PubMed DOI
Fleury C., Berard F., Balme B., Thomas L. The Study of Cutaneous Melanomas in Camargue-Type Gray-Skinned Horses (1): Clinical-Pathological Characterization. Pigment Cell Res. 2000;13:39–46. doi: 10.1034/j.1600-0749.2000.130108.x. PubMed DOI
Vostry L., Hofmanova B., Vydrova H., Pribyl J., Majzlik I. Estimation of Genetic Parameters for Melanoma in the Old Kladruber Horse. Czech J. Anim. Sci. 2012;57:75–82. doi: 10.17221/5134-CJAS. DOI
Curik I., Druml T., Seltenhammer M., Sundstrom E., Pielberg G.R., Andersson L., Solkner J. Complex Inheritance of Melanoma and Pigmentation of Coat and Skin in Grey Horses. PLoS Genetics. 2013;9:e1003248. doi: 10.1371/journal.pgen.1003248. PubMed DOI PMC
Campagne C., Jule S., Bernex F., Estrada M., Aubin Houzelstein G., Panthier J.J., Egidy G. RACK1, a Clue to the Diagnosis of Cutaneous Melanomas in Horses. BMC Vet. Res. 2012;8:95. doi: 10.1186/1746-6148-8-95. PubMed DOI PMC
Thirloway L., Rudolph R., Leipold H.W. Malignant Melanomas in a Duroc Boar. J. Am. Vet. Med. Assoc. 1977;170:345–347. PubMed
Fisher L.F., Olander H.J. Spontaneous Neoplasms of Pigs-A Study of 31 Cases. J. Comp. Pathol. 1978;88:505–517. doi: 10.1016/0021-9975(78)90004-X. PubMed DOI
Baba A.I., Gaboreanu M., Rotaru O., Kwieczinsky R. Malignant Melanomas in Farm Animals. Morphol. Embryol. (Bucur.) 1983;29:191–194. PubMed
Perez J., Garcia P.M., Bautista M.J., Millan Y., Ordas J., De Las Mulas J.M. Immunohistochemical Characterization of Tumor Cells and Inflammatory Infiltrate Associated with Cutaneous Melanocytic Tumors of Duroc and Iberian Swine. Vet. Pathol. 2002;39:445–451. doi: 10.1354/vp.39-4-445. PubMed DOI
Bundza A., Feltmate T.E. Melanocytic Cutaneous Lesions and Melanotic Regional Lymph Nodes in Slaughter Swine. Can. J. Vet. Res. Rev. Can. Rech. Vet. 1990;54:301–304. PubMed PMC
Hordinsky M.K., Ruth G., King R. Inheritance of Melanocytic Tumors in Duroc Swine. J. Hered. 1985;76:385–386. PubMed
Strafuss A.C., Dommert A.R., Tumbleson M.E., Middleton C.C. Cutaneous Melanoma in Miniature Swine. Lab. Anim. Care. 1968;18:165–169. PubMed
Millikan L.E., Boylon J.L., Hook R.R., Manning P.J. Melanoma in Sinclair Swine: A New Animal Model. J. Invest. Dermatol. 1974;62:20–30. doi: 10.1111/1523-1747.ep12676714. PubMed DOI
Hook R.R., Aultman M.D., Adelstein E.H., Oxenhandler R.W., Millikan L.E., Middleton C.C. Influence of Selective Breeding on the Incidence of Melanomas in Sinclair Miniature Swine. Int. J. Cancer. 1979;24:668–672. doi: 10.1002/ijc.2910240522. PubMed DOI
Manning P.J., Millikan L.E., Cox V.S., Carey K.D., Hook R.R. Congenital Cutaneous and Visceral Melanomas of Sinclair Miniature Swine: Three Case Reports. J. Natl. Cancer Inst. 1974;52:1559–1566. doi: 10.1093/jnci/52.5.1559. PubMed DOI
Oxenhandler R.W., Adelstein E.H., Haigh J.P., Hook R.R., Clark W.H. Malignant Melanoma in the Sinclair Miniature Swine: An Autopsy Study of 60 Cases. Am. J. Pathol. 1979;96:707–720. PubMed PMC
Hook R.R., Berkelhammer J., Oxenhandler R.W. Melanoma: Sinclair Swine Melanoma. Am. J. Pathol. 1982;108:130–133. PubMed PMC
Misfeldt M.L., Grimm D.R. Sinclair Miniature Swine: An Animal Model of Human Melanoma. Vet. Immunol. Immunopathol. 1994;43:167–175. doi: 10.1016/0165-2427(94)90133-3. PubMed DOI
Greene J.F., Townsend J.S., Amoss M.S. Histopathology of Regression in Sinclair Swine Model of Melanoma. Lab. Investig. J. Tech. Methods Pathol. 1994;71:17–24. PubMed
Morgan C.D., Measel J.W., Amoss M.S., Rao A., Greene J.F. Immunophenotypic Characterization of Tumor Infiltrating Lymphocytes and Peripheral Blood Lymphocytes Isolated from Melanomatous and Non-Melanomatous Sinclair Miniature Swine. Vet. Immunol. Immunopathol. 1996;55:189–203. doi: 10.1016/S0165-2427(96)05621-8. PubMed DOI
Cui J., Chen D., Misfeldt M.L., Swinfard R.W., Bystryn J.C. Antimelanoma Antibodies in Swine with Spontaneously Regressing Melanoma. Pigment Cell Res. 1995;8:60–63. doi: 10.1111/j.1600-0749.1995.tb00775.x. PubMed DOI
Gossett R., Kier A.B., Schroeder F., McConkey D., Fadok V., Amoss M.S. Cycloheximide-Induced Apoptosis in Melanoma Cells Derived from Regressing Cutaneous Tumours of SINCLAIR Swine. J. Comp. Pathol. 1996;115:353–372. doi: 10.1016/S0021-9975(96)80071-5. PubMed DOI
Pathak S., Multani A.S., McConkey D.J., Imam A.S., Amoss M.S. Spontaneous Regression of Cutaneous Melanoma in Sinclair Swine is Associated with Defective Telomerase Activity and Extensive Telomere Erosion. Int. J. Oncol. 2000;17:1219–1243. doi: 10.3892/ijo.17.6.1219. PubMed DOI
Tissot R.G., Beattie C.W., Amoss M.S. The Swine Leucocyte Antigen (SLA) Complex and Sinclair Swine Cutaneous Malignant Melanoma. Anim. Genet. 1989;20:51–57. doi: 10.1111/j.1365-2052.1989.tb00841.x. PubMed DOI
Tissot R.G., Beattie C.W., Amoss M.S. Inheritance of Sinclair Swine Cutaneous Malignant Melanoma. Cancer Res. 1987;47:5542–5545. PubMed
Blangero J., Tissot R.G., Beattie C.W., Amoss M.S. Genetic Determinants of Cutaneous Malignant Melanoma in Sinclair Swine. Br. J. Cancer. 1996;73:667–671. doi: 10.1038/bjc.1996.116. PubMed DOI PMC
Pathak S., Amoss M.S. Genetic Predisposition and Specific Chromosomal Defects Associated with Sinclair Swine Malignant Melanomas. Int. J. Oncol. 1997;11:53–57. doi: 10.3892/ijo.11.1.53. PubMed DOI
Muller S., Wanke R., Distl O. Inheritance of Melanocytic Lesions and Their Association with the White Colour Phenotype in Miniature Swine. J. Anim. Breed. Genet. 2001;118:275–283. doi: 10.1046/j.1439-0388.2001.00280.x. DOI
Muller S., Wanke R., Distl O. Segregation of Pigment Cell Anomalies in Munich Miniature Swine (MMS) Troll Crossed with German Landrace. DTW Dtsch. Tierarztl. Wochenschr. 1995;102:391–394. PubMed
Buttner M., Wanke R., Obermann B. Natural Killer (NK) Activity of Porcine Blood Lymphocytes Against Allogeneic Melanoma Target Cells. Vet. Immunol. Immunopathol. 1991;29:89–103. doi: 10.1016/0165-2427(91)90055-H. PubMed DOI PMC
Dieckhoff B., Puhlmann J., Buscher K., Hafner Marx A., Herbach N., Bannert N., Buttner M., Wanke R., Kurth R., Denner J. Expression of Porcine Endogenous Retroviruses (PERVs) in Melanomas of Munich Miniature Swine (MMS) Troll. Vet. Microbiol. 2007;123:53–68. doi: 10.1016/j.vetmic.2007.02.024. PubMed DOI
Buscher K., Trefzer U., Hofmann M., Sterry W., Kurth R., Denner J. Expression of Human Endogenous Retrovirus K in Melanomas and Melanoma Cell Lines. Cancer Res. 2005;65:4172–4180. doi: 10.1158/0008-5472.CAN-04-2983. PubMed DOI
Gonzalez Cao M., Iduma P., Karachaliou N., Santarpia M., Blanco J., Rosell R. Human Endogenous Retroviruses and Cancer. Cancer Biol. Med. 2016;13:483–488. PubMed PMC
Glodek P. Breeding Program and Population Standards of the Goettingen Miniature Swine. In: Tumbleson M.E., editor. Swine in Biomedical Research. Volume 1. Plenum Press; New York, NY, USA: 1986. pp. 23–28.
Horak V., Fortyn K., Hruban V., Klaudy J. Hereditary Melanoblastoma in Miniature Pigs and its Successful Therapy by Devitalization Technique. Cell. Mol. Biol. Noisy Gd. Fr. 1999;45:1119–1129. PubMed
Hruban V., Horak V., Fortyn K., Hradecky J., Klaudy J., Smith D.M., Reisnerova H., Majzlik I. Inheritance of Malignant Melanoma in the MeLiM Strain of Miniature Pigs. Vet. Med. (Praha) 2004;49:453–459. doi: 10.17221/5739-VETMED. DOI
Vincent Naulleau S., Le Chalony C., Leplat J.J., Bouet S., Bailly C., Spatz A., Vielh P., Avril M.F., Tricaud Y., Gruand J., et al. Clinical and Histopathological Characterization of Cutaneous Melanomas in the Melanoblastoma-Bearing Libechov Minipig Model. Pigment Cell Melanoma Res. 2004;17:24–35. doi: 10.1046/j.1600-0749.2003.00101.x. PubMed DOI
Fortyn K., Hruban V., Horak V. Treatment of Malignant Melanoma. Br. J. Surg. 1994;81:146–147. doi: 10.1002/bjs.1800810155. PubMed DOI
Fortyn K., Hruban V., Horak V., Tichy J. Exceptional Occurrence and Extent of Malignant Melanoma in Pig. Vet. Med. (Praha) 1998;43:87–91.
Fortyn K., Hruban V., Horak V., Hradecky J., Tichy J. Melanoblastoma in Laboratory Minipigs: A Model for Studying Human Malignant Melan6oma. Vet. Med. (Praha) 1994;39:597–604. PubMed
Al Shaer M., Gollapudi D., Papageorgio C. Melanoma Biomarkers: Vox Clamantis in Deserto (Review) Oncol. Lett. 2010;1:399–405. doi: 10.3892/ol_00000070. PubMed DOI PMC
Pohlreich P., Stribrna J., Kleibl Z., Horak V., Klaudy J. Detection of Neoplastic Cells in Blood of Miniature Pigs with Hereditary Melanoma. Vet. Med. (Praha) 2001;46:199–204. doi: 10.17221/7880-VETMED. DOI
De Souza L.M., Robertson B.M., Robertson G.P. Future of Circulating Tumor Cells in the Melanoma Clinical and Research Laboratory Settings. Cancer Lett. 2017;392:60–70. doi: 10.1016/j.canlet.2017.01.023. PubMed DOI
Rodic S., Mihalcioiu C., Saleh R.R. Detection Methods of Circulating Tumor Cells in Cutaneous Melanoma: A Systematic Review. Crit. Rev. Oncol. Hematol. 2014;91:74–92. doi: 10.1016/j.critrevonc.2014.01.007. PubMed DOI
Borovansky J., Horak V., Elleder M., Fortyn K., Smit N.P., Kolb A.M. Biochemical Characterization of a New Melanoma Model-The Minipig MeLiM Strain. Melanoma Res. 2003;13:543–548. doi: 10.1097/00008390-200312000-00001. PubMed DOI
Millikan L.E., Hook R.R., Manning P.J. Immunobiology of Melanoma. Gross and Ultrastructural Studies in a New Melanoma Model: The Sinclair Swine. Yale J. Biol. Med. 1973;46:631–645. PubMed PMC
Hunter J.A., Zaynoun S., Paterson W.D., Bleehen S.S., Mackie R., Cochran A.J. Cellular Fine Structure in the Invasive Nodules of Different Histogenetic Types of Malignant Melanoma. Br. J. Dermatol. 1978;98:255–272. doi: 10.1111/j.1365-2133.1978.tb06152.x. PubMed DOI
Borovansky J. Quantitative Parameters of Melanomas Differentiation. Neoplasma. 1978;25:349–352. PubMed
Ochi Y., Atsumi S., Aoyagi T., Umezawa K. Inhibition of Tumor Cell Invasion in the Boyden Chamber Assay by a Mannosidase Inhibitor, Mannostatin A. Anticancer Res. 1993;13:1421–1424. PubMed
Borovansky J., Hach P. Disparate behaviour of Two Melanosomal Enzymes (α-Mannosidase and γ-Glutamyltransferase) Cell. Mol. Biol. Noisy Gd. Fr. 1999;45:1047–1052. PubMed
Egidy G., Jule S., Bosse P., Bernex F., Geffrotin C., Vincent Naulleau S., Horak V., Sastre Garau X., Panthier J.J. Transcription Analysis in the MeLiM Swine Model Identifies RACK1 as a Potential Marker of Malignancy for Human Melanocytic Proliferation. Mol. Cancer. 2008;7:34. doi: 10.1186/1476-4598-7-34. PubMed DOI PMC
Xia J., Wang Y., Li F., Wang J., Mu Y., Mei X., Li X., Zhu W., Jin X., Yu K. Expression of Microphthalmia Transcription Factor, S100 Protein, and HMB-45 in Malignant Melanoma and Pigmented Nevi. Biomed. Rep. 2016;5:327–331. doi: 10.3892/br.2016.732. PubMed DOI PMC
Planska D., Burocziova M., Strnadel J., Horak V. Immunohistochemical Analysis of Collagen IV and Laminin Expression in Spontaneous Melanoma Regression in the Melanoma-Bearing Libechov Minipig. Acta Histochem. Cytochem. 2015;48:15–26. doi: 10.1267/ahc.14020. PubMed DOI PMC
Geffrotin C., Horak V., Crechet F., Tricaud Y., Lethias C., Vincent Naulleau S., Vielh P. Opposite Regulation of Tenascin-C and Tenascin-X in MeLiM Swine Heritable Cutaneous Malignant Melanoma. Biochim. Biophys. Acta BBA Gen. Subj. 2000;1524:196–202. doi: 10.1016/S0304-4165(00)00158-6. PubMed DOI
Planska D., Kovalska J., Cizkova J., Horak V. Tissue Rebuilding During Spontaneous Regression of Melanoma in the Melanoma-bearing Libechov Minipig. Anticancer Res. 2018;38:4629–4636. doi: 10.21873/anticanres.12767. PubMed DOI
Engbring J.A., Kleinman H.K. The Basement Membrane Matrix in Malignancy. J. Pathol. 2003;200:465–470. doi: 10.1002/path.1396. PubMed DOI
Pasco S., Ramont L., Maquart F.X., Monboisse J.C. Control of Melanoma Progression by Various Matrikines from Basement Membrane Macromolecules. Crit. Rev. Oncol. Hematol. 2004;49:221–233. doi: 10.1016/j.critrevonc.2003.09.006. PubMed DOI
Hofmann U.B., Houben R., Brocker E.B., Becker J.C. Role of Matrix Metalloproteinases in Melanoma Cell Invasion. Biochimie. 2005;87:307–314. doi: 10.1016/j.biochi.2005.01.013. PubMed DOI
Kaariainen E., Nummela P., Soikkeli J., Yin M., Lukk M., Jahkola T., Virolainen S., Ora A., Ukkonen E., Saksela O., et al. Switch to an Invasive Growth Phase in Melanoma is Associated with Tenascin-C, Fibronectin, and Procollagen-I Forming Specific Channel Structures for Invasion. J. Pathol. 2006;210:181–191. doi: 10.1002/path.2045. PubMed DOI
Shao H., Kirkwood J.M., Wells A. Tenascin-C Signaling in Melanoma. Cell Adhes. Migr. 2014;9:125–130. doi: 10.4161/19336918.2014.972781. PubMed DOI PMC
Anyz J., Vyslouzilova L., Vaculovic T., Tvrdonova M., Kanicky V., Haase H., Horak V., Stepankova O., Heger Z., Adam V. Spatial Mapping of Metals in Tissue-Sections Using Combination of Mass-Spectrometry and Histology Through Image Registration. Sci. Rep. 2017;7:40169. doi: 10.1038/srep40169. PubMed DOI PMC
Gorodetsky R., Sheskin J., Weinreb A. Iron, Copper, and Zinc Concentrations in Normal Skin and in Various Nonmalignant and Malignant Lesions. Int. J. Dermatol. 1986;25:440–445. doi: 10.1111/j.1365-4362.1986.tb03449.x. PubMed DOI
Guran R., Vanickova L., Horak V., Krizkova S., Michalek P., Heger Z., Zitka O., Adam V. MALDI MSI of MeLiM Melanoma: Searching for Differences in Protein Profiles. PLoS ONE. 2017;12:e0189305. doi: 10.1371/journal.pone.0189305. PubMed DOI PMC
Krizkova S., Fabrik I., Adam V., Kukacka J., Prusa R., Chavis G.J., Trnkova L., Strnadel J., Horak V., Kizek R. Utilizing of Adsorptive Transfer Stripping Technique Brdicka Reaction for Determination of Metallothioneins Level in Melanoma Cells, Blood Serum and Tissues. Sensors. 2008;8:3106–3122. doi: 10.3390/s8053106. PubMed DOI PMC
Weinlich G. Metallothionein-Overexpression as a Prognostic Marker in Melanoma. G. Ital. Dermatol. E Venereol. Organo Uff. Soc. Ital. Dermatol. E Sifilogr. 2009;144:27–38. PubMed
Cizkova J., Erbanova M., Sochor J., Jindrova A., Strnadova K., Horak V. Relationship Between Haematological Profile and Progression or Spontaneous Regression of Melanoma in the Melanoma-Bearing Libechov Minipigs. Vet. J. Lond. Engl. 1997. 2019;249:1–9. PubMed
Blanc F., Crechet F., Bruneau N., Piton G., Leplat J.J., Andreoletti F., Egidy G., Vincent Naulleau S., Bourneuf E. Impact of a CD4 Gene Haplotype on the Immune Response in Minipigs. Immunogenetics. 2018;70:209–222. doi: 10.1007/s00251-017-1037-z. PubMed DOI
Du Z.Q., Vincent Naulleau S., Gilbert H., Vignoles F., Crechet F., Shimogiri T., Yasue H., Leplat J.J., Bouet S., Gruand J., et al. Detection of Novel Quantitative Trait Loci for Cutaneous Melanoma by Genome-Wide Scan in the MeLiM Swine Model. Int. J. Cancer. 2007;120:303–320. PubMed
Le Chalony C., Renard C., Vincent Naulleau S., Crechet F., Leplat J.J., Tricaud Y., Horak V., Gruand J., Le Roy P., Frelat G., et al. CDKN2A Region Polymorphism and Genetic Susceptibility to Melanoma in the Melim Swine Model of Familial Melanoma. Int. J. Cancer. 2003;103:631–635. doi: 10.1002/ijc.10871. PubMed DOI
Geffrotin C., Crechet F., Le Roy P., Le Chalony C., Leplat J.J., Iannuccelli N., Barbosa A., Renard C., Gruand J., Milan D., et al. Identification of Five Chromosomal Regions Involved in Predisposition to Melanoma by Genome-Wide Scan in the MeLiM Swine Model. Int. J. Cancer. 2004;110:39–50. doi: 10.1002/ijc.20053. PubMed DOI
Bourneuf E., Du Z.Q., Estelle J., Gilbert H., Crechet F., Piton G., Milan D., Geffrotin C., Lathrop M., Demenais F., et al. Genetic and Functional Evaluation of MITF as a Candidate Gene for Cutaneous Melanoma Predisposition in Pigs. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 2011;22:602–612. doi: 10.1007/s00335-011-9334-6. PubMed DOI
Fernandez Rodriguez A., Estelle J., Blin A., Munoz M., Crechet F., Demenais F., Vincent Naulleau S., Bourneuf E. KIT and Melanoma Predisposition in Pigs: Sequence Variants and Association Analysis. Anim. Genet. 2014;45:445–448. doi: 10.1111/age.12136. PubMed DOI
Rambow F., Piton G., Bouet S., Leplat J.J., Baulande S., Marrau A., Stam M., Horak V., Vincent Naulleau S. Gene Expression Signature for Spontaneous Cancer Regression in Melanoma Pigs. Neoplasia. 2008;10:714. doi: 10.1593/neo.08344. PubMed DOI PMC
Rambow F., Malek O., Geffrotin C., Leplat J.J., Bouet S., Piton G., Hugot K., Bevilacqua C., Horak V., Vincent Naulleau S. Identification of Differentially Expressed Genes in Spontaneously Regressing Melanoma Using the MeLiM Swine Model. Pigment Cell Melanoma Res. 2008;21:147–161. doi: 10.1111/j.1755-148X.2008.00442.x. PubMed DOI
Bourneuf E., Estelle J., Blin A., Crechet F., del Pilar Schneider M., Gilbert H., Brossard M., Vaysse A., Lathrop M., Vincent Naulleau S., et al. New Susceptibility Loci for Cutaneous Melanoma Risk and Progression Revealed Using a Porcine Model. Oncotarget. 2018;9:27682–27697. doi: 10.18632/oncotarget.25455. PubMed DOI PMC
Sun X., Gao L., Chien H.Y., Li W.C., Zhao J. The Regulation and Function of the NUAK Family. J. Mol. Endocrinol. 2013;51:R15–R22. doi: 10.1530/JME-13-0063. PubMed DOI
Xu X., Hussain W.M., Vijai J., Offit K., Rubin M.A., Demichelis F., Klein R.J. Variants at IRX4 as Prostate Cancer Expression Quantitative Trait Loci. Eur. J. Hum. Genet. EJHG. 2014;22:558–563. doi: 10.1038/ejhg.2013.195. PubMed DOI PMC
Sanchez Tena S., Cubillos Rojas M., Schneider T., Rosa J.L. Functional and Pathological Relevance of HERC Family Proteins: A Decade Later. Cell. Mol. Life Sci. 2016;73:1955–1968. doi: 10.1007/s00018-016-2139-8. PubMed DOI PMC
Fattore L., Costantini S., Malpicci D., Ruggiero C.F., Ascierto P.A., Croce C.M., Mancini R., Ciliberto G. MicroRNAs in Melanoma Development and Resistance to Target Therapy. Oncotarget. 2017;8 doi: 10.18632/oncotarget.14763. PubMed DOI PMC
Baco M., Chu C.Y., Bouet S., Rogel Gaillard C., Bourneuf E., Le Provost F., Chu C.Y., Vincent Naulleau S. Analysis of Melanoma-Related microRNAs Expression During the Spontaneous Regression of Cutaneous Melanomas in MeLiM Pigs. Pigment Cell Melanoma Res. 2014;27:668–670. doi: 10.1111/pcmr.12243. PubMed DOI
So K.A., Hong J.H., Jin H.M., Kim J.W., Song J.Y., Lee J.K., Lee N.W. The Prognostic Significance of Preoperative Leukocytosis in Epithelial Ovarian Carcinoma: A Retrospective Cohort Study. Gynecol. Oncol. 2014;132:551–555. doi: 10.1016/j.ygyno.2014.01.010. PubMed DOI
Azab B., Mohammad F., Shah N., Vonfrolio S., Lu W., Kedia S., Bloom S.W. The Value of the Pretreatment Neutrophil Lymphocyte Ratio vs. Platelet Lymphocyte Ratio in Predicting the Long-Term Survival in Colorectal Cancer. Cancer Biomark. Sect. Dis. Markers. 2014;14:303–312. doi: 10.3233/CBM-140416. PubMed DOI
Zhang H., Xia H., Zhang L., Zhang B., Yue D., Wang C. Clinical Significance of Preoperative Neutrophil-Lymphocyte vs Platelet-Lymphocyte Ratio in Primary Operable Patients with Non-Small Cell Lung Cancer. Am. J. Surg. 2015;210:526–535. doi: 10.1016/j.amjsurg.2015.03.022. PubMed DOI
Feng L., Gu S., Wang P., Chen H., Chen Z., Meng Z., Liu L. White Blood Cell and Granulocyte Counts Are Independent Predictive Factors for Prognosis of Advanced Pancreatic Caner. Gastroenterol. Res. Pract. 2018;2018:8096234. doi: 10.1155/2018/8096234. PubMed DOI PMC
Cananzi F.C.M., Dalgleish A., Mudan S. Surgical Management of Intraabdominal Metastases from Melanoma: Role of the Neutrophil to Lymphocyte Ratio as a Potential Prognostic Factor. World J. Surg. 2014;38:1542–1550. doi: 10.1007/s00268-013-2418-6. PubMed DOI
Cassidy M.R., Wolchok R.E., Zheng J., Panageas K.S., Wolchok J.D., Coit D., Postow M.A., Ariyan C. Neutrophil to Lymphocyte Ratio is Associated With Outcome During Ipilimumab Treatment. EBioMedicine. 2017;18:56–61. doi: 10.1016/j.ebiom.2017.03.029. PubMed DOI PMC
Davis J.L., Ripley R.T., Frankel T.L., Maric I., Lozier J.N., Rosenberg S.A. Paraneoplastic Granulocytosis in Metastatic Melanoma. Melanoma Res. 2010;20:326–329. doi: 10.1097/CMR.0b013e328339da1e. PubMed DOI PMC
Ferrucci P.F., Gandini S., Battaglia A., Alfieri S., Di Giacomo A.M., Giannarelli D., Cappellini G.C.A., De Galitiis F., Marchetti P., Amato G., et al. Baseline Neutrophil-To-Lymphocyte Ratio is Associated with Outcome of Ipilimumab-Treated Metastatic Melanoma Patients. Br. J. Cancer. 2015;112:1904–1910. doi: 10.1038/bjc.2015.180. PubMed DOI PMC
Wade R.G., Robinson A.V., Lo M.C.I., Keeble C., Marples M., Dewar D.J., Moncrieff M.D.S., Peach H. Baseline Neutrophil-Lymphocyte and Platelet-Lymphocyte Ratios as Biomarkers of Survival in Cutaneous Melanoma: A Multicenter Cohort Study. Ann. Surg. Oncol. 2018;25:3341–3349. doi: 10.1245/s10434-018-6660-x. PubMed DOI PMC
Rachidi S., Kaur M., Lautenschlaeger T., Li Z. Platelet Count Correlates with Stage and Predicts Survival in Melanoma. Platelets. 2019:1–5. doi: 10.1080/09537104.2019.1573977. PubMed DOI
Tas F., Erturk K. Anemia in Cutaneous Malignant Melanoma: Low Blood Hemoglobin Level is Associated with Nodal Involvement, Metastatic Disease, and Worse Survival. Nutr. Cancer. 2018;70:236–240. doi: 10.1080/01635581.2018.1412475. PubMed DOI
Busti F., Marchi G., Ugolini S., Castagna A., Girelli D. Anemia and Iron Deficiency in Cancer Patients: Role of Iron Replacement Therapy. Pharm. Basel Switz. 2018;11 doi: 10.3390/ph11040094. PubMed DOI PMC
Weinstein D.A. Inappropriate Expression of Hepcidin is Associated with Iron Refractory Anemia: Implications for the Anemia of Chronic Disease. Blood. 2002;100:3776–3781. doi: 10.1182/blood-2002-04-1260. PubMed DOI
Porto G. Iron Overload and Immunity. World J. Gastroenterol. 2007;13:4707. doi: 10.3748/wjg.v13.i35.4707. PubMed DOI PMC
Vyoral D., Petrak J. Hepcidin: A Direct Link Between Iron Metabolism and Immunity. Int. J. Biochem. Cell Biol. 2005;37:1768–1773. doi: 10.1016/j.biocel.2005.02.023. PubMed DOI
Gonzalez H., Hagerling C., Werb Z. Roles of the Immune System in Cancer: From Tumor Initiation to Metastatic Progression. Genes Dev. 2018;32:1267–1284. doi: 10.1101/gad.314617.118. PubMed DOI PMC
Antohe M., Nedelcu R.I., Nichita L., Popp C.G., Cioplea M., Brinzea A., Hodorogea A., Calinescu A., Balaban M., Ion D.A., et al. Tumor Infiltrating Lymphocytes: The Regulator of Melanoma Evolution. Oncol. Lett. 2019;17:4155–4161. doi: 10.3892/ol.2019.9940. PubMed DOI PMC
Clemente C.G., Mihm M.C., Bufalino R., Zurrida S., Collini P., Cascinelli N. Prognostic Value of Tumor Infiltrating Lymphocytes in the Vertical Growth Phase of Primary Cutaneous Melanoma. Cancer. 1996;77:1303–1310. doi: 10.1002/(SICI)1097-0142(19960401)77:7<1303::AID-CNCR12>3.0.CO;2-5. PubMed DOI
Van Houdt I.S., Sluijter B.J.R., Moesbergen L.M., Vos W.M., De Gruijl T.D., Molenkamp B.G., Van Den Eertwegh A.J.M., Hooijberg E., Van Leeuwen P.A.M., Meijer C.J.L.M., et al. Favorable Outcome in Clinically Stage II Melanoma Patients is Associated with the Presence of Activated Tumor Infiltrating T-Lymphocytes and Preserved MHC Class I Antigen Expression. Int. J. Cancer. 2008;123:609–615. doi: 10.1002/ijc.23543. PubMed DOI
Rohaan M.W., Van Den Berg J.H., Kvistborg P., Haanen J.B.A.G. Adoptive Transfer of Tumor-Infiltrating lymphocytes in Melanoma: A Viable Treatment Option. J. Immunother. Cancer. 2018;6:102. doi: 10.1186/s40425-018-0391-1. PubMed DOI PMC
Cizkova J., Sinkorova Z., Strnadova K., Cervinkova M., Horak V., Sinkora J., Stepanova K., Sinkora M. The Role of αβ T-Cells in Spontaneous Regression of Melanoma Tumors in Swine. Dev. Comp. Immunol. 2019;92:60–68. doi: 10.1016/j.dci.2018.10.001. PubMed DOI
Overgaard N.H., Jung J.W., Steptoe R.J., Wells J.W. CD4+/CD8+ Double-Positive T Cells: More Than Just a Developmental Stage? J. Leukoc. Biol. 2015;97:31–38. doi: 10.1189/jlb.1RU0814-382. PubMed DOI
Pomorska Mol M., Markowska Daniel I. AGE-Dependent Changes in Relative and Absolute Size of Lymphocyte Subsets in the Blood of Pigs from Birth to Slaughter. Bull. Vet. Inst. Pulawy. 2011;55:305–310.
Bagot M., Echchakir H., Mami Chouaib F., Delfau Larue M.H., Charue D., Bernheim A., Chouaib S., Boumsell L., Bensussan A. Isolation of Tumor-Specific Cytotoxic CD4+ and CD4+CD8dim+ T-Cell Clones Infiltrating a Cutaneous T-Cell Lymphoma. Blood. 1998;91:4331–4341. doi: 10.1182/blood.V91.11.4331. PubMed DOI
De Marchi S.U., Stinco G., Errichetti E., Bonin S., Di Meo N., Trevisan G. The Influence of the Coexpression of CD4 and CD8 in Cutaneous Lesions on Prognosis of Mycosis Fungoides: A Preliminary Study. J. Skin Cancer. 2014;2014:624143. doi: 10.1155/2014/624143. PubMed DOI PMC
Desfrançois J., Moreau Aubry A., Vignard V., Godet Y., Khammari A., Dreno B., Jotereau F., Gervois N. Double Positive CD4CD8 Alphabeta T Cells: A New Tumor-Reactive Population in Human Melanomas. PLoS ONE. 2010;5:e8437. doi: 10.1371/journal.pone.0008437. PubMed DOI PMC
Roy S., Trinchieri G. Microbiota: A Key Orchestrator of Cancer Therapy. Nat. Rev. Cancer. 2017;17:271–285. doi: 10.1038/nrc.2017.13. PubMed DOI
McQuade J.L., Daniel C.R., Helmink B.A., Wargo J.A. Modulating the Microbiome to Improve Therapeutic Response in Cancer. Lancet Oncol. 2019;20:e77–e91. doi: 10.1016/S1470-2045(18)30952-5. PubMed DOI
Warner A.B., McQuade J.L. Modifiable Host Factors in Melanoma: Emerging Evidence for Obesity, Diet, Exercise, and the Microbiome. Curr. Oncol. Rep. 2019;21:72. doi: 10.1007/s11912-019-0814-2. PubMed DOI PMC
Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V., Prieto P.A., Vicente D., Hoffman K., Wei S.C., et al. Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science. 2018;359:97–103. doi: 10.1126/science.aan4236. PubMed DOI PMC
Salava A., Aho V., Pereira P., Koskinen K., Paulin L., Auvinen P., Lauerma A. Skin Microbiome in Melanomas and Melanocytic Nevi. Eur. J. Dermatol. EJD. 2016;26:49–55. doi: 10.1684/ejd.2015.2696. PubMed DOI
Svejstil R., Salmonova H., Cizkova J. Analysis of Cutaneous Microbiota of Piglets with Hereditary Melanoma. Sci. Agric. Bohem. 2018;49:285–290. doi: 10.2478/sab-2018-0035. DOI
Mrazek J., Mekadim C., Kucerova P., Svejstil R., Salmonova H., Vlasakova J., Tarasova R., Cizkova J., Cervinkova M. Melanoma-Related Changes in Skin Microbiome. Folia Microbiol. (Praha) 2019;64:435–442. doi: 10.1007/s12223-018-00670-3. PubMed DOI
Zhou Z., Chen J., Yao H., Hu H. Fusobacterium and Colorectal Cancer. Front. Oncol. 2018;8:371. doi: 10.3389/fonc.2018.00371. PubMed DOI PMC
Brennan C.A., Garrett W.S. Fusobacterium Nucleatum-Symbiont, Opportunist and Oncobacterium. Nat. Rev. Microbiol. 2019;17:156–166. doi: 10.1038/s41579-018-0129-6. PubMed DOI PMC
Yu L.C.H., Wei S.C., Ni Y.H. Impact of Microbiota in Colorectal Carcinogenesis: Lessons from Experimental Models. Intest. Res. 2018;16:346–357. doi: 10.5217/ir.2018.16.3.346. PubMed DOI PMC
Fortyn K., Hradecky J., Pazdera J., Klaudy J., Hruban V., Dvorak P., Matousek J., Tichy J., Kolin V. Experimental Elimination of Various Intestinal Segments by Means of Devascularization (Devitalization) Z. Exp. Chir. Transplant. Kunstl. Organe Organ Sekt. Exp. Chir. Ges. Chir. DDR. 1985;18:34–41. PubMed
Fortyn K., Hradecky J., Pazdera J., Klaudy J., Hruban V., Dvorak P., Matousek J., Tichy J., Kolin V. Small and Large Intestine Devascularization (Devitalization) and Potentials in the Therapeutic Use of this Operative Method. Z. Exp. Chir. Transplant. Kunstl. Organe Organ Sekt. Exp. Chir. Ges. Chir. DDR. 1985;18:42–50. PubMed
Vasek P., Krajnik J., Kopsky D.J., Kalina V., Frydrych M. Autologous Tumor Immunizing Devascularization of an Invasive Colorectal Cancer: A Case Report and Literature Review. Mol. Clin. Oncol. 2016;5:521–526. doi: 10.3892/mco.2016.1033. PubMed DOI PMC
Fortyn K., Hradecky J., Hruban V., Horak V., Dvorak P., Tichy J. Morphology of Regressive Changes in the Kidney Following Experimental Ischaemia. Int. Urol. Nephrol. 1987;19:9–19. doi: 10.1007/BF02549672. PubMed DOI
Fortyn K., Hruban V., Hradecky J., Tichy J., Dvorak P., Horak V. A Technique of the Segmental Devitalization of Kidneys in Experiment. Z. Exp. Chir. Transplant. Kunstl. Organe Organ Sekt. Exp. Chir. Ges. Chir. DDR. 1988;21:275–280. PubMed
Fortyn K., Hruban V., Hradecky J., Tichy J., Dvorak P., Horak V. The Devitalization of the Stomach by a Devascularization Technique. Acta Chir. Hung. 1988;29:163–172. PubMed
Fortyn K., Hruban V., Hradecky J., Tichy J., Dvorak P., Horak V. Experimental Devascularization (Devitalization) of the Rectum and Sigmoideum. Z. Exp. Chir. Transplant. Kunstl. Organe Organ Sekt. Exp. Chir. Ges. Chir. DDR. 1989;22:173–179. PubMed
Horak V., Moravkova A., Strnadel J., Hradecky J., Usvald D., Vannucci L. Devitalization as a Special Surgical Tumour Treatment Inducing Anti-Cancer Response–An Experimental Study in Two Animal Models; Proceedings of the CIMT Cancer Immunotherapy 6th Annual Meeting; Mainz, Germany. 15–16 May 2008.
Srivastava P.K., Udono H., Blachere N.E., Li Z. Heat Shock Proteins Transfer Peptides During Antigen Processing and CTL Priming. Immunogenetics. 1994;39:93–98. doi: 10.1007/BF00188611. PubMed DOI
Binder R.J., Blachere N.E., Srivastava P.K. Heat Shock Protein-Chaperoned Peptides but not Free Peptides Introduced into the Cytosol are Presented Efficiently by Major Histocompatibility Complex I Molecules. J. Biol. Chem. 2001;276:17163–17171. doi: 10.1074/jbc.M011547200. PubMed DOI
Singh Jasuja H., Hilf N., Arnold Schild D., Schild H. The Role of Heat Shock Proteins and Their Receptors in the Activation of the Immune System. Biol. Chem. 2001;382:629–636. doi: 10.1515/BC.2001.074. PubMed DOI
Hoos A., Levey D.L. Vaccination with Heat Shock Protein-Peptide Complexes: From Basic Science to Clinical Applications. Expert Rev. Vaccines. 2003;2:369–379. doi: 10.1586/14760584.2.3.369. PubMed DOI
Testori A., Richards J., Whitman E., Mann G.B., Lutzky J., Camacho L., Parmiani G., Tosti G., Kirkwood J.M., Hoos A., et al. Phase III Comparison of Vitespen, an Autologous Tumor-Derived Heat Shock Protein gp96 Peptide Complex Vaccine, with Physician’s Choice of Treatment for Stage IV Melanoma: The C-100-21 Study Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008;26:955–962. doi: 10.1200/JCO.2007.11.9941. PubMed DOI
Tosti G., Di Pietro A., Ferrucci P.F., Testori A. HSPPC-96 Vaccine in Metastatic Melanoma Patients: From the State of the Art to a Possible Future. Expert Rev. Vaccines. 2009;8:1513–1526. doi: 10.1586/erv.09.108. PubMed DOI
Di Pietro A., Tosti G., Ferrucci P.F., Testori A. The Immunological era in Melanoma Treatment: New Challenges for Heat Shock Protein-Based Vaccine in the Advanced Disease. Expert Opin. Biol. Ther. 2011;11:1395–1407. doi: 10.1517/14712598.2011.605353. PubMed DOI
Shevtsov M., Multhoff G. Heat Shock Protein-Peptide and HSP-Based Immunotherapies for the Treatment of Cancer. Front. Immunol. 2016;7:171. doi: 10.3389/fimmu.2016.00171. PubMed DOI PMC
Prather R.S., Shen M., Dai Y. Genetically Modified Pigs for Medicine and Agriculture. Biotechnol. Genet. Eng. Rev. 2008;25:245–265. PubMed
Flisikowska T., Kind A., Schnieke A. Genetically Modified Pigs to Model Human Diseases. J. Appl. Genet. 2014;55:53–64. doi: 10.1007/s13353-013-0182-9. PubMed DOI
Watson A.L., Carlson D.F., Largaespada D.A., Hackett P.B., Fahrenkrug S.C. Engineered Swine Models of Cancer. Front. Genet. 2016;7:78. doi: 10.3389/fgene.2016.00078. PubMed DOI PMC
Schachtschneider K.M., Schwind R.M., Newson J., Kinachtchouk N., Rizko M., Mendoza Elias N., Grippo P., Principe D.R., Park A., Overgaard N.H., et al. The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform. Front. Oncol. 2017;7:190. doi: 10.3389/fonc.2017.00190. PubMed DOI PMC
Vodicka P., Smetana K., Dvorankova B., Emerick T., Xu Y.Z., Ourednik J., Ourednik V., Motlik J. The Miniature Pig as an Animal Model in Biomedical Research. Ann. N. Y. Acad. Sci. 2005;1049:161–171. doi: 10.1196/annals.1334.015. PubMed DOI
Dysbiosis of skin microbiome and gut microbiome in melanoma progression