• This record comes from PubMed

Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma

. 2019 Nov 09 ; 10 (11) : . [epub] 20191109

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

National cancer databases document that melanoma is the most aggressive and deadly cutaneous malignancy with worldwide increasing incidence in the Caucasian population. Around 10% of melanomas occur in families. Several germline mutations were identified that might help to indicate individuals at risk for preventive interventions and early disease detection. More than 50% of sporadic melanomas carry mutations in Ras/Raf/mitogen-activated protein kinase (MAPK/MEK) pathway, which may represent aims of novel targeted therapies. Despite advances in targeted therapies and immunotherapies, the outcomes in metastatic tumor are still unsatisfactory. Here, we review animal models that help our understanding of melanoma development and treatment, including non-vertebrate, mouse, swine, and other mammal models, with an emphasis on those with spontaneously developing melanoma. Special attention is paid to the melanoma-bearing Libechov minipig (MeLiM). This original swine model of hereditary metastatic melanoma enables studying biological processes underlying melanoma progression, as well as spontaneous regression. Current histological, immunohistochemical, biochemical, genetic, hematological, immunological, and skin microbiome findings in the MeLiM model are summarized, together with development of new therapeutic approaches based on tumor devitalization. The ongoing study of molecular and immunological base of spontaneous regression in MeLiM model has potential to bring new knowledge of clinical importance.

See more in PubMed

Cummins D.L., Cummins J.M., Pantle H., Silverman M.A., Leonard A.L., Chanmugam A. Cutaneous Malignant Melanoma. Mayo Clin. Proc. 2006;81:500–507. doi: 10.4065/81.4.500. PubMed DOI

Lomas A., Leonardi Bee J., Bath Hextall F. A Systematic Review of Worldwide Incidence of Nonmelanoma Skin Cancer. Br. J. Dermatol. 2012;166:1069–1080. doi: 10.1111/j.1365-2133.2012.10830.x. PubMed DOI

Craythorne E., Al Niami F. Skin Cancer. Medicine (Baltimore) 2017;45:431–434. doi: 10.1016/j.mpmed.2017.04.003. DOI

Garcovich S., Colloca G., Sollena P., Andrea B., Balducci L., Cho W.C., Bernabei R., Peris K. Skin Cancer Epidemics in the Elderly as An Emerging Issue in Geriatric Oncology. Aging Dis. 2017;8:643–661. doi: 10.14336/AD.2017.0503. PubMed DOI PMC

Cichorek M., Wachulska M., Stasiewicz A., Tyminska A. Skin Melanocytes: Biology and Development. Postepy Dermatol. Alergol. 2013;30:30–41. doi: 10.5114/pdia.2013.33376. PubMed DOI PMC

McElearney S.T., Dengel L.T., Vaughters A.B.R., Patterson J.W., McGahren E.D., Slingluff C.L. Neonatal Congenital Malignant Melanoma with Lymph Node Metastasis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009;27:2726–2728. doi: 10.1200/JCO.2008.20.7258. PubMed DOI PMC

Perniciaro C. Dermatopathologic Variants of Malignant Melanoma. Mayo Clin. Proc. 1997;72:273–279. doi: 10.4065/72.3.273. PubMed DOI

O’Brien K., Bhatia A., Tsen F., Chen M., Wong A.K., Woodley D.T., Li W. Identification of the Critical Therapeutic Entity in Secreted Hsp90α that Promotes Wound Healing in Newly Re-Standardized Healthy and Diabetic Pig Models. PLoS ONE. 2014;9:e113956. doi: 10.1371/journal.pone.0113956. PubMed DOI PMC

Summerfield A., Meurens F., Ricklin M.E. The Immunology of the Porcine Skin and its Value as a Model for Human Skin. Mol. Immunol. 2015;66:14–21. doi: 10.1016/j.molimm.2014.10.023. PubMed DOI

Erdmann F., Lortet Tieulent J., Schuz J., Zeeb H., Greinert R., Breitbart E.W., Bray F. International Trends in the Incidence of Malignant Melanoma 1953–2008-Are Recent Generations at Higher or Lower Risk? Int. J. Cancer. 2013;132:385–400. doi: 10.1002/ijc.27616. PubMed DOI

Eggermont A.M., Spatz A., Robert C. Cutaneous Melanoma. Lancet. 2014;383:816–827. doi: 10.1016/S0140-6736(13)60802-8. PubMed DOI

Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551. PubMed DOI

Rastrelli M., Tropea S., Rossi C.R., Alaibac M. Melanoma: Epidemiology, Risk Factors, Pathogenesis, Diagnosis and Classification. Vivo Athens Greece. 2014;28:1005–1011. PubMed

Berwick M., Buller D.B., Cust A., Gallagher R., Lee T.K., Meyskens F., Pandey S., Thomas N.E., Veierod M.B., Ward S. Melanoma Epidemiology and Prevention. Cancer Treat. Res. 2016;167:17–49. PubMed

Leachman S.A., Lucero O.M., Sampson J.E., Cassidy P., Bruno W., Queirolo P., Ghiorzo P. Identification, Genetic Testing, and Management of Hereditary Melanoma. Cancer Metastasis Rev. 2017;36:77–90. doi: 10.1007/s10555-017-9661-5. PubMed DOI PMC

Duggleby W.F., Stoll H., Priore R.L., Greenwald P., Graham S. A Genetic Analysis of Melanoma--Polygenic Inheritance as a Threshold Trait. Am. J. Epidemiol. 1981;114:63–72. doi: 10.1093/oxfordjournals.aje.a113175. PubMed DOI

Dracopoli N.C., Alhadeff B., Houghton A.N., Old L.J. Loss of Heterozygosity at Autosomal and X-Linked Loci During Tumor Progression in a Patient with Melanoma. Cancer Res. 1987;47:3995–4000. PubMed

Fountain J.W., Karayiorgou M., Ernstoff M.S., Kirkwood J.M., Vlock D.R., Titus-Ernstoff L., Bouchard B., Vijayasaradhi S., Houghton A.N., Lahti J. Homozygous Deletions within Human Chromosome Band 9p21 in Melanoma. Proc. Natl. Acad. Sci. USA. 1992;89:10557–10561. doi: 10.1073/pnas.89.21.10557. PubMed DOI PMC

Nancarrow D.J., Mann G.J., Holland E.A., Walker G.J., Beaton S.C., Walters M.K., Luxford C., Palmer J.M., Donald J.A., Weber J.L. Confirmation of Chromosome 9p Linkage in Familial Melanoma. Am. J. Hum. Genet. 1993;53:936–942. PubMed PMC

Kamb A., Shattuck Eidens D., Eeles R., Liu Q., Gruis N.A., Ding W., Hussey C., Tran T., Miki Y., Weaver Feldhaus J. Analysis of the p16 Gene (CDKN2) as a Candidate for the Chromosome 9p Melanoma Susceptibility Locus. Nat. Genet. 1994;8:23–26. doi: 10.1038/ng0994-22. PubMed DOI

Borg A., Johannsson U., Johannsson O., Hakansson S., Westerdahl J., Masback A., Olsson H., Ingvar C. Novel Germline p16 Mutation in Familial Malignant Melanoma in Southern Sweden. Cancer Res. 1996;56:2497–2500. PubMed

FitzGerald M.G., Harkin D.P., Silva Arrieta S., MacDonald D.J., Lucchina L.C., Unsal H., O’Neill E., Koh J., Finkelstein D.M., Isselbacher K.J., et al. Prevalence of Germ-Line Mutations in p16, p19ARF, and CDK4 in Familial Melanoma: Analysis of a Clinic-Based Population. Proc. Natl. Acad. Sci. USA. 1996;93:8541–8545. doi: 10.1073/pnas.93.16.8541. PubMed DOI PMC

Harland M., Meloni R., Gruis N., Pinney E., Brookes S., Spurr N.K., Frischauf A.M., Bataille V., Peters G., Cuzick J., et al. Germline Mutations of the CDKN2 Gene in UK Melanoma Families. Hum. Mol. Genet. 1997;6:2061–2067. doi: 10.1093/hmg/6.12.2061. PubMed DOI

Soufir N., Avril M.F., Chompret A., Demenais F., Bombled J., Spatz A., Stoppa Lyonnet D., Benard J., Bressac De Paillerets B. Prevalence of p16 and CDK4 Germline Mutations in 48 Melanoma-Prone Families in France. The French Familial Melanoma Study Group. Hum. Mol. Genet. 1998;7:209–216. doi: 10.1093/hmg/7.2.209. PubMed DOI

Aitken J., Welch J., Duffy D., Milligan A., Green A., Martin N., Hayward N. CDKN2A Variants in a Population-Based Sample of Queensland Families with Melanoma. J. Natl. Cancer Inst. 1999;91:446–452. doi: 10.1093/jnci/91.5.446. PubMed DOI

Quelle D.E., Zindy F., Ashmun R.A., Sherr C.J. Alternative Reading Frames of the INK4a Tumor Suppressor Gene Encode two Unrelated Proteins Capable of Inducing Cell Cycle Arrest. Cell. 1995;83:993–1000. PubMed

Stott F.J., Bates S., James M.C., McConnell B.B., Starborg M., Brookes S., Palmero I., Ryan K., Hara E., Vousden K.H., et al. The Alternative Product from the Human CDKN2A Locus, p14(ARF), Participates in a Regulatory Feedback Loop with p53 and MDM2. EMBO J. 1998;17:5001–5014. doi: 10.1093/emboj/17.17.5001. PubMed DOI PMC

Goldstein A.M., Chan M., Harland M., Hayward N.K., Demenais F., Bishop D.T., Azizi E., Bergman W., Bianchi Scarra G., Bruno W., et al. Features Associated with Germline CDKN2A Mutations: A GenoMEL Study of Melanoma-Prone Families from Three Continents. J. Med. Genet. 2007;44:99–106. doi: 10.1136/jmg.2006.043802. PubMed DOI PMC

Rossi M., Pellegrini C., Cardelli L., Ciciarelli V., Di Nardo L., Fargnoli M.C. Familial Melanoma: Diagnostic and Management Implications. Dermatol. Pract. Concept. 2019;9:10–16. doi: 10.5826/dpc.0901a03. PubMed DOI PMC

Harland M., Cust A.E., Badenas C., Chang Y.M., Holland E.A., Aguilera P., Aitken J.F., Armstrong B.K., Barrett J.H., Carrera C., et al. Prevalence and Predictors of Germline CDKN2A Mutations for Melanoma Cases from Australia, Spain and the United Kingdom. Hered. Cancer Clin. Pract. 2014;12:20. doi: 10.1186/1897-4287-12-20. PubMed DOI PMC

Wolfel T., Hauer M., Schneider J., Serrano M., Wolfel C., Klehmann Hieb E., De Plaen E., Hankeln T., Meyer Zum Buschenfelde K.H., Beach D. A p16INK4a-Insensitive CDK4 Mutant Targeted by Cytolytic T Lymphocytes in a Human Melanoma. Science. 1995;269:1281–1284. doi: 10.1126/science.7652577. PubMed DOI

Zuo L., Weger J., Yang Q., Goldstein A.M., Tucker M.A., Walker G.J., Hayward N., Dracopoli N.C. Germline Mutations in the p16INK4a Binding Domain of cdk4 in Familial Melanoma. Nat. Genet. 1996;12:97–99. doi: 10.1038/ng0196-97. PubMed DOI

Puntervoll H.E., Yang X.R., Vetti H.H., Bachmann I.M., Avril M.F., Benfodda M., Catricala C., Dalle S., Duval Modeste A.B., Ghiorzo P., et al. Melanoma Prone Families with CDK4 Germline Mutation: Phenotypic Profile and Associations with MC1R Variants. J. Med. Genet. 2013;50:264–270. doi: 10.1136/jmedgenet-2012-101455. PubMed DOI PMC

Harbour J.W., Onken M.D., Roberson E.D.O., Duan S., Cao L., Worley L.A., Council M.L., Matatall K.A., Helms C., Bowcock A.M. Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas. Science. 2010;330:1410–1413. doi: 10.1126/science.1194472. PubMed DOI PMC

Wiesner T., Obenauf A.C., Murali R., Fried I., Griewank K.G., Ulz P., Windpassinger C., Wackernagel W., Loy S., Wolf I., et al. Germline Mutations in BAP1 Predispose to Melanocytic Tumors. Nat. Genet. 2011;43:1018–1021. doi: 10.1038/ng.910. PubMed DOI PMC

Njauw C.N.J., Kim I., Piris A., Gabree M., Taylor M., Lane A.M., DeAngelis M.M., Gragoudas E., Duncan L.M., Tsao H. Germline BAP1 Inactivation is Preferentially Associated with Metastatic Ocular Melanoma and Cutaneous-Ocular Melanoma Families. PLoS ONE. 2012;7:e35295. doi: 10.1371/journal.pone.0035295. PubMed DOI PMC

Murali R., Wilmott J.S., Jakrot V., Al Ahmadie H.A., Wiesner T., McCarthy S.W., Thompson J.F., Scolyer R.A. BAP1 Expression in Cutaneous Melanoma: A Pilot Study. Pathol. J. PCPA. 2013;45:606–609. doi: 10.1097/PAT.0b013e3283653818. PubMed DOI

Ismail I.H., Davidson R., Gagne J.P., Xu Z.Z., Poirier G.G., Hendzel M.J. Germline Mutations in BAP1 Impair its Function in DNA Double-Strand Break Repair. Cancer Res. 2014;74:4282–4294. doi: 10.1158/0008-5472.CAN-13-3109. PubMed DOI

Soura E., Eliades P.J., Shannon K., Stratigos A.J., Tsao H. Hereditary Melanoma: Update on Syndromes and Management: Emerging Melanoma Cancer Complexes and Genetic Counseling. J. Am. Acad. Dermatol. 2016;74:411–420. doi: 10.1016/j.jaad.2015.08.037. PubMed DOI PMC

Horn S., Figl A., Rachakonda P.S., Fischer C., Sucker A., Gast A., Kadel S., Moll I., Nagore E., Hemminki K., et al. TERT Promoter Mutations in Familial and Sporadic Melanoma. Science. 2013;339:959–961. doi: 10.1126/science.1230062. PubMed DOI

Robles Espinoza C.D., Harland M., Ramsay A.J., Aoude L.G., Quesada V., Ding Z., Pooley K.A., Pritchard A.L., Tiffen J.C., Petljak M., et al. POT1 Loss-of-Function Variants Predispose to Familial Melanoma. Nat. Genet. 2014;46:478–481. doi: 10.1038/ng.2947. PubMed DOI PMC

Shi J., Yang X.R., Ballew B., Rotunno M., Calista D., Fargnoli M.C., Ghiorzo P., Bressac De Paillerets B., Nagore E., Avril M.F., et al. Rare Missense Variants in POT1 Predispose to Familial Cutaneous Malignant Melanoma. Nat. Genet. 2014;46:482–486. doi: 10.1038/ng.2941. PubMed DOI PMC

Potrony M., Puig Butille J.A., Ribera Sola M., Iyer V., Robles Espinoza C.D., Aguilera P., Carrera C., Malvehy J., Badenas C., Landi M.T., et al. POT1 Germline Mutations but Not TERT Promoter Mutations are Implicated in Melanoma Susceptibility in a Large Cohort of Spanish Melanoma Families. Br. J. Dermatol. 2019;181:105–113. doi: 10.1111/bjd.17443. PubMed DOI PMC

Aoude L.G., Pritchard A.L., Robles Espinoza C.D., Wadt K., Harland M., Choi J., Gartside M., Quesada V., Johansson P., Palmer J.M., et al. Nonsense Mutations in the Shelterin Complex Genes ACD and TERF2IP in Familial Melanoma. J. Natl. Cancer Inst. 2015;107:dju408. doi: 10.1093/jnci/dju408. PubMed DOI PMC

Hodgkinson C.A., Moore K.J., Nakayama A., Steingrímsson E., Copeland N.G., Jenkins N.A., Arnheiter H. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell. 1993;74:395–404. doi: 10.1016/0092-8674(93)90429-T. PubMed DOI

Yasumoto K., Yokoyama K., Shibata K., Tomita Y., Shibahara S. Microphthalmia Associated Transcription Factor as a Regulator for Melanocyte-Specific Transcription of the Human Tyrosinase Gene. Mol. Cell. Biol. 1994;14:8058–8070. doi: 10.1128/MCB.14.12.8058. PubMed DOI PMC

Dynek J.N., Chan S.M., Liu J., Zha J., Fairbrother W.J., Vucic D. Microphthalmia-Associated Transcription Factor is a Critical Transcriptional Regulator of Melanoma Inhibitor of Apoptosis in Melanomas. Cancer Res. 2008;68:3124–3132. doi: 10.1158/0008-5472.CAN-07-6622. PubMed DOI

Garraway L.A., Widlund H.R., Rubin M.A., Getz G., Berger A.J., Ramaswamy S., Beroukhim R., Milner D.A., Granter S.R., Du J., et al. Integrative Genomic Analyses Identify MITF as a Lineage Survival Oncogene Amplified in Malignant Melanoma. Nature. 2005;436:117–122. doi: 10.1038/nature03664. PubMed DOI

Bertolotto C., Lesueur F., Giuliano S., Strub T., De Lichy M., Bille K., Dessen P., D’Hayer B., Mohamdi H., Remenieras A., et al. A SUMOylation-Defective MITF Germline Mutation Predisposes to Melanoma and Renal Carcinoma. Nature. 2011;480:94–98. doi: 10.1038/nature10539. PubMed DOI

Palmer J.S., Duffy D.L., Box N.F., Aitken J.F., O’Gorman L.E., Green A.C., Hayward N.K., Martin N.G., Sturm R.A. Melanocortin-1 Receptor Polymorphisms and Risk of Melanoma: Is the Association Explained Solely by Pigmentation Phenotype? Am. J. Hum. Genet. 2000;66:176–186. doi: 10.1086/302711. PubMed DOI PMC

Kennedy C., Ter Huurne J., Berkhout M., Gruis N., Bastiaens M., Bergman W., Willemze R., Bavinck J.N. Melanocortin 1 Receptor (MC1R) Gene Variants are Associated with an Increased Risk for Cutaneous Melanoma which is Largely Independent of Skin Type and Hair Color. J. Invest. Dermatol. 2001;117:294–300. doi: 10.1046/j.0022-202x.2001.01421.x. PubMed DOI

Box N.F., Duffy D.L., Chen W., Stark M., Martin N.G., Sturm R.A., Hayward N.K. MC1R Genotype Modifies Risk of Melanoma in Families Segregating CDKN2A Mutations. Am. J. Hum. Genet. 2001;69:765–773. doi: 10.1086/323412. PubMed DOI PMC

Paolino G., Moliterni E., Corsetti P., Didona D., Bottoni U., Calvieri S., Mattozzi C. Vitamin D and Melanoma: State of the Art and Possible Therapeutic Uses. G. Ital. Dermatol. E Venereol. Organo Uff. Soc. Ital. Dermatol. E Sifilogr. 2019;154:64–71. doi: 10.23736/S0392-0488.17.05801-1. PubMed DOI

Slominski A.T., Brozyna A.A., Zmijewski M.A., Jozwicki W., Jetten A.M., Mason R.S., Tuckey R.C., Elmets C.A. Vitamin D Signaling and Melanoma: Role of Vitamin D and its Receptors in Melanoma Progression and Management. Lab. Investig. J. Tech. Methods Pathol. 2017;97:706–724. doi: 10.1038/labinvest.2017.3. PubMed DOI PMC

Hutchinson P.E., Osborne J.E., Lear J.T., Smith A.G., Bowers P.W., Morris P.N., Jones P.W., York C., Strange R.C., Fryer A.A. Vitamin D Receptor Polymorphisms are Associated with Altered Prognosis in Patients with Malignant Melanoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2000;6:498–504. PubMed

Shahbazi M., Pravica V., Nasreen N., Fakhoury H., Fryer A.A., Strange R.C., Hutchinson P.E., Osborne J.E., Lear J.T., Smith A.G., et al. Association between Functional Polymorphism in EGF Gene and Malignant Melanoma. Lancet Lond. Engl. 2002;359:397–401. doi: 10.1016/S0140-6736(02)07600-6. PubMed DOI

Hayward N.K. Genetics of Melanoma Predisposition. Oncogene. 2003;22:3053–3062. doi: 10.1038/sj.onc.1206445. PubMed DOI

Fargnoli M.C., Argenziano G., Zalaudek I., Peris K. High-And Low-Penetrance Cutaneous Melanoma Susceptibility Genes. Expert Rev. Anticancer Ther. 2006;6:657–670. doi: 10.1586/14737140.6.5.657. PubMed DOI

Aoude L.G., Wadt K.A.W., Pritchard A.L., Hayward N.K. Genetics of Familial Melanoma: 20 Years after CDKN2A. Pigment Cell Melanoma Res. 2015;28:148–160. doi: 10.1111/pcmr.12333. PubMed DOI

Bennett D.C. Genetics of Melanoma Progression: The Rise and Fall of Cell Senescence. Pigment Cell Melanoma Res. 2016;29:122–140. doi: 10.1111/pcmr.12422. PubMed DOI

Roberts M.R., Asgari M.M., Toland A.E. Genome-Wide Association Studies and Polygenic Risk Scores for Skin Cancer: Clinically Useful Yet? Br. J. Dermatol. 2019 doi: 10.1111/bjd.17917. PubMed DOI PMC

Pho L.N., Leachman S.A. Genetics of Pigmentation and Melanoma Predisposition. G. Ital. Dermatol. E Venereol. Organo Uff. Soc. Ital. Dermatol. E Sifilogr. 2010;145:37–45. PubMed

Scherer D., Kumar R. Genetics of Pigmentation in Skin Cancer-A Review. Mutat. Res. 2010;705:141–153. doi: 10.1016/j.mrrev.2010.06.002. PubMed DOI

Ritterhouse L.L., Barletta J.A. BRAF V600E Mutation-Specific Antibody: A Review. Semin. Diagn. Pathol. 2015;32:400–408. doi: 10.1053/j.semdp.2015.02.010. PubMed DOI

Kunz M. Oncogenes in Melanoma: An Update. Eur. J. Cell Biol. 2014;93:1–10. doi: 10.1016/j.ejcb.2013.12.002. PubMed DOI

Reddy B.Y., Miller D.M., Tsao H. Somatic Driver Mutations in Melanoma. Cancer. 2017;123:2104–2117. doi: 10.1002/cncr.30593. PubMed DOI

Cicenas J., Tamosaitis L., Kvederaviciute K., Tarvydas R., Staniute G., Kalyan K., Meskinyte Kausiliene E., Stankevicius V., Valius M. KRAS, NRAS and BRAF Mutations in Colorectal Cancer and Melanoma. Med. Oncol. Northwood Lond. Engl. 2017;34:26. doi: 10.1007/s12032-016-0879-9. PubMed DOI

Rabbie R., Ferguson P., Molina Aguilar C., Adams D.J., Robles Espinoza C.D. Melanoma Subtypes: Genomic Profiles, Prognostic Molecular Markers and Therapeutic Possibilities. J. Pathol. 2019;247:539–551. doi: 10.1002/path.5213. PubMed DOI PMC

Cancer Genome Atlas Network Genomic Classification of Cutaneous Melanoma. Cell. 2015;161:1681–1696. doi: 10.1016/j.cell.2015.05.044. PubMed DOI PMC

Hartman R.I., Lin J.Y. Cutaneous Melanoma A Review in Detection, Staging, and Management. Hematol. Oncol. Clin. N. Am. 2019;33:25–38. doi: 10.1016/j.hoc.2018.09.005. PubMed DOI

Everson T.C. Spontaneous Regression of Cancer. Ann. N. Y. Acad. Sci. 1964;114:721–735. doi: 10.1111/j.1749-6632.1964.tb40991.x. PubMed DOI

Maio M. Melanoma as a Model Tumour for Immuno-Oncology. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012;23:viii10–viii14. doi: 10.1093/annonc/mds257. PubMed DOI

Kalialis L.V., Drzewiecki K.T., Klyver H. Spontaneous Regression of Metastases from Melanoma: Review of the Literature. Melanoma Res. 2009;19:275–282. doi: 10.1097/CMR.0b013e32832eabd5. PubMed DOI

Margaritescu I., Chiriţa A.D., Vasilescu F. Completely Regressed Primary Cutaneous Melanoma-Difficulties in Diagnosis and Classification. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2014;55:635–642. PubMed

Cole W.H., Everson T.C. Spontaneous Regression of Cancer: Preliminary Report. Ann. Surg. 1956;144:366–383. PubMed PMC

Bourneuf E. The MeLiM Minipig: An Original Spontaneous Model to Explore Cutaneous Melanoma Genetic Basis. Front. Genet. 2017;8:146. doi: 10.3389/fgene.2017.00146. PubMed DOI PMC

Cervinkova M., Kucerova P., Cizkova J. Spontaneous Regression of Malignant Melanoma-Is it Based on the Interplay between Host Immune System and Melanoma Antigens? Anticancer. Drugs. 2017;28:819–830. doi: 10.1097/CAD.0000000000000526. PubMed DOI

Ribero S., Moscarella E., Ferrara G., Piana S., Argenziano G., Longo C. Regression in Cutaneous Melanoma: A Comprehensive Review from Diagnosis to Prognosis. J. Eur. Acad. Dermatol. Venereol. JEADV. 2016;30:2030–2037. doi: 10.1111/jdv.13815. PubMed DOI

Kaur C., Thomas R.J., Desai N., Green M.A., Lovell D., Powell B.W.E.M., Cook M.G. The Correlation of Regression in Primary Melanoma with sentinel Lymph Node Status. J. Clin. Pathol. 2008;61:297–300. doi: 10.1136/jcp.2007.049411. PubMed DOI

Crompton J.G., Gilbert E., Brady M.S. Clinical Implications of the Eighth Edition of the American Joint Committee on Cancer Melanoma Staging. J. Surg. Oncol. 2019;119:168–174. doi: 10.1002/jso.25343. PubMed DOI

Kozar I., Margue C., Rothengatter S., Haan C., Kreis S. Many Ways to Resistance: How Melanoma Cells Evade Targeted Therapies. Biochim. Biophys. Acta Rev. Cancer. 2019;1871:313–322. doi: 10.1016/j.bbcan.2019.02.002. PubMed DOI

Lorentzen H.F. Targeted Therapy for Malignant Melanoma. Curr. Opin. Pharmacol. 2019;46:116–121. doi: 10.1016/j.coph.2019.05.010. PubMed DOI

Glitza Oliva I.C., Alqusairi R. Immunotherapy for Melanoma. Adv. Exp. Med. Biol. 2018;995:43–63. PubMed

Margolis N., Markovits E., Markel G. Reprogramming Lymphocytes for the Treatment of Melanoma: From Biology to Therapy. Adv. Drug Deliv. Rev. 2019;141:104–124. doi: 10.1016/j.addr.2019.06.005. PubMed DOI

Weiss S.A., Wolchok J.D., Sznol M. Immunotherapy of Melanoma: Facts and Hopes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019;25:5191–5201. doi: 10.1158/1078-0432.CCR-18-1550. PubMed DOI PMC

Yu C., Liu X., Yang J., Zhang M., Jin H., Ma X., Shi H. Combination of Immunotherapy With Targeted Therapy: Theory and Practice in Metastatic Melanoma. Front. Immunol. 2019;10:990. doi: 10.3389/fimmu.2019.00990. PubMed DOI PMC

Stern H.M., Zon L.I. Cancer Genetics and Drug Discovery in the Zebrafish. Nat. Rev. Cancer. 2003;3:533–539. doi: 10.1038/nrc1126. PubMed DOI

Schartl M., Walter R.B. Xiphophorus and Medaka Cancer Models. Adv. Exp. Med. Biol. 2016;916:531–552. PubMed

Bootorabi F., Manouchehri H., Changizi R., Barker H., Palazzo E., Saltari A., Parikka M., Pincelli C., Aspatwar A. Zebrafish as a Model Organism for the Development of Drugs for Skin Cancer. Int. J. Mol. Sci. 2017;18:1550. doi: 10.3390/ijms18071550. PubMed DOI PMC

Cagan R.L., Zon L.I., White R.M. Modeling Cancer with Flies and Fish. Dev. Cell. 2019;49:317–324. doi: 10.1016/j.devcel.2019.04.013. PubMed DOI PMC

Bennett D., Lyulcheva E., Cobbe N. Drosophila as a Potential Model for Ocular Tumors. Ocul. Oncol. Pathol. 2015;1:190–199. doi: 10.1159/000370155. PubMed DOI PMC

Hanratty W.P., Ryerse J.S. A Genetic Melanotic Neoplasm of Drosophila Melanogaster. Dev. Biol. 1981;83:238–249. doi: 10.1016/0012-1606(81)90470-X. PubMed DOI

Anders F. Contributions of the Gordon-Kosswig Melanoma System to the Present Concept of Neoplasia. Pigment Cell Res. 1991;4:7–29. doi: 10.1111/j.1600-0749.1991.tb00309.x. PubMed DOI

Setlow R.B., Woodhead A.D., Grist E. Animal Model for Ultraviolet Radiation-Induced Melanoma: Platyfish-Swordtail Hybrid. Proc. Natl. Acad. Sci. USA. 1989;86:8922–8926. doi: 10.1073/pnas.86.22.8922. PubMed DOI PMC

Wood S.R., Berwick M., Ley R.D., Walter R.B., Setlow R.B., Timmins G.S. UV Causation of Melanoma in Xiphophorus is Dominated by Melanin Photosensitized Oxidant Production. Proc. Natl. Acad. Sci. USA. 2006;103:4111–4115. doi: 10.1073/pnas.0511248103. PubMed DOI PMC

Wittbrodt J., Lammers R., Malitschek B., Ullrich A., Schartl M. The Xmrk Receptor Tyrosine Kinase is Activated in Xiphophorus Malignant Melanoma. EMBO J. 1992;11:4239–4246. doi: 10.1002/j.1460-2075.1992.tb05518.x. PubMed DOI PMC

Patton E.E., Widlund H.R., Kutok J.L., Kopani K.R., Amatruda J.F., Murphey R.D., Berghmans S., Mayhall E.A., Traver D., Fletcher C.D.M., et al. BRAF Mutations are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma. Curr. Biol. CB. 2005;15:249–254. doi: 10.1016/j.cub.2005.01.031. PubMed DOI

Dovey M., White R.M., Zon L.I. Oncogenic NRAS Cooperates with p53 Loss to Generate Melanoma in Zebrafish. Zebrafish. 2009;6:397–404. doi: 10.1089/zeb.2009.0606. PubMed DOI PMC

Santoriello C., Zon L.I. Hooked! Modeling Human Disease in Zebrafish. J. Clin. Invest. 2012;122:2337–2343. doi: 10.1172/JCI60434. PubMed DOI PMC

Scahill C.M., Digby Z., Sealy I.M., Wojciechowska S., White R.J., Collins J.E., Stemple D.L., Bartke T., Mathers M.E., Patton E.E., et al. Loss of the Chromatin Modifier Kdm2aa Causes BrafV600E-Independent Spontaneous Melanoma in Zebrafish. PLoS Genetics. 2017;13:e1006959. doi: 10.1371/journal.pgen.1006959. PubMed DOI PMC

Stoletov K., Klemke R. Catch of the Day: Zebrafish as a Human Cancer Model. Oncogene. 2008;27:4509–4520. doi: 10.1038/onc.2008.95. PubMed DOI

Ablain J., Zon L.I. Of Fish and Men: Using Zebrafish to Fight Human Diseases. Trends Cell Biol. 2013;23:584–586. doi: 10.1016/j.tcb.2013.09.009. PubMed DOI PMC

Haldi M., Ton C., Seng W.L., McGrath P. Human Melanoma Cells Transplanted into Zebrafish Proliferate, Migrate, Produce Melanin, form Masses and Stimulate Angiogenesis in Zebrafish. Angiogenesis. 2006;9:139–151. doi: 10.1007/s10456-006-9040-2. PubMed DOI

Heilmann S., Ratnakumar K., Langdon E., Kansler E., Kim I., Campbell N.R., Perry E., McMahon A., Kaufman C., Van Rooijen E., et al. A Quantitative System for Studying Metastasis Using Transparent Zebrafish. Cancer Res. 2015;75:4272–4282. doi: 10.1158/0008-5472.CAN-14-3319. PubMed DOI PMC

Schartl M., Wilde B., Laisney J.A.G.C., Taniguchi Y., Takeda S., Meierjohann S. A Mutated EGFR is Sufficient to Induce Malignant Melanoma with Genetic Background-Dependent Histopathologies. J. Invest. Dermatol. 2010;130:249–258. doi: 10.1038/jid.2009.213. PubMed DOI

Schartl M., Kneitz S., Wilde B., Wagner T., Henkel C.V., Spaink H.P., Meierjohann S. Conserved Expression Signatures between Medaka and Human Pigment Cell Tumors. PLoS ONE. 2012;7:e37880. doi: 10.1371/journal.pone.0037880. PubMed DOI PMC

Levine N., Queen L., Chalom A.A., Daniels L.J. Animal Model of Intracutaneous Melanoma. J. Invest. Dermatol. 1982;78:191–193. doi: 10.1111/1523-1747.ep12506432. PubMed DOI

Berkelhammer J., Oxenhandler R.W. Evaluation of Premalignant and Malignant Lesions During the Induction of Mouse Melanomas. Cancer Res. 1987;47:1251–1254. PubMed

Bradl M., Klein Szanto A., Porter S., Mintz B. Malignant Melanoma in Transgenic Mice. Proc. Natl. Acad. Sci. USA. 1991;88:164–168. doi: 10.1073/pnas.88.1.164. PubMed DOI PMC

Mintz B., Silvers W.K. Transgenic Mouse Model of Malignant Skin Melanoma. Proc. Natl. Acad. Sci. USA. 1993;90:8817–8821. doi: 10.1073/pnas.90.19.8817. PubMed DOI PMC

Gattoni Celli S., Byers R.H., Calorini L., Ferrone S. Organ-Specific Metastases in Melanoma: Experimental Animal Models. Pigment Cell Res. 1993;6:381–384. doi: 10.1111/j.1600-0749.1993.tb00619.x. PubMed DOI

Chen S., Zhu H., Wetzel W.J., Philbert M.A. Spontaneous Melanocytosis in Transgenic Mice. J. Invest. Dermatol. 1996;106:1145–1151. doi: 10.1111/1523-1747.ep12340194. PubMed DOI

Zhu H., Reuhl K., Zhang X., Botha R., Ryan K., Wei J., Chen S. Development of Heritable Melanoma in Transgenic Mice. J. Invest. Dermatol. 1998;110:247–252. doi: 10.1046/j.1523-1747.1998.00133.x. PubMed DOI

Bobek V., Kolostova K., Pinterova D., Kacprzak G., Adamiak J., Kolodziej J., Boubelik M., Kubecova M., Hoffman R.M. A Clinically Relevant, Syngeneic Model of Spontaneous, Highly Metastatic B16 Mouse Melanoma. Anticancer Res. 2010;5:4799–4803. PubMed

Saleh J. Murine Models of Melanoma. Pathol. Res. Pract. 2018;214:1235–1238. doi: 10.1016/j.prp.2018.07.008. PubMed DOI

Kuzu O.F., Nguyen F.D., Noory M.A., Sharma A. Current State of Animal (Mouse) Modeling in Melanoma Research. Cancer Growth Metastasis. 2015;8:81–94. doi: 10.4137/CGM.S21214. PubMed DOI PMC

Harris A.L., Joseph R.W., Copland J.A. Patient-Derived Tumor Xenograft Models for Melanoma Drug Discovery. Expert Opin. Drug Discov. 2016;11:895–906. doi: 10.1080/17460441.2016.1216968. PubMed DOI

Choi Y., Lee S., Kim K., Kim S.H., Chung Y.J., Lee C. Studying Cancer Immunotherapy Using Patient-Derived Xenografts (PDXs) in Humanized Mice. Exp. Mol. Med. 2018;50:1–9. doi: 10.1038/s12276-018-0115-0. PubMed DOI PMC

McKinney A.J., Holmen S.L. Animal Models of Melanoma: A Somatic Cell Gene Delivery Mouse Model Allows Rapid Evaluation of Genes Implicated in Human Melanoma. Chin. J. Cancer. 2011;30:153–162. doi: 10.5732/cjc.011.10007. PubMed DOI PMC

Perez Guijarro E., Day C.P., Merlino G., Zaidi M.R. Genetically Engineered Mouse Models of Melanoma. Cancer. 2017;123:2089–2103. doi: 10.1002/cncr.30684. PubMed DOI PMC

Niu Y., Liang S. Mammalian Models Based on RCAS-TVA Technique. Zool. Res. 2008;29:335–345.

Dankort D., Curley D.P., Cartlidge R.A., Nelson B., Karnezis A.N., Damsky W.E., You M.J., DePinho R.A., McMahon M., Bosenberg M. Braf(V600E) Cooperates with Pten Loss to Induce Metastatic Melanoma. Nat. Genet. 2009;41:544–552. doi: 10.1038/ng.356. PubMed DOI PMC

Klein Szanto A.J., Silvers W.K., Mintz B. Ultraviolet Radiation-Induced Malignant Skin Melanoma in Melanoma-Susceptible Transgenic Mice. Cancer Res. 1994;54:4569–4572. PubMed

Broome Powell M., Gause P.R., Hyman P., Gregus J., Lluria Prevatt M., Nagle R., Bowden G.T. Induction of Melanoma in TPras Transgenic Mice. Carcinogenesis. 1999;20:1747–1753. doi: 10.1093/carcin/20.9.1747. PubMed DOI

Ley R.D. Animal Models of Ultraviolet Radiation (UVR)-Induced Cutaneous Melanoma. Front. Biosci. J. Virtual Libr. 2002;7:d1531–d1534. PubMed

Larue L. Origin of Mouse Melanomas. J. Invest. Dermatol. 2012;132:2135–2136. doi: 10.1038/jid.2012.221. PubMed DOI

Goldschmidt M.H. Pigmented Lesions of the Skin. Clin. Dermatol. 1994;12:507–514. doi: 10.1016/0738-081X(94)90217-8. PubMed DOI

Modiano J.F., Ritt M.G., Wojcieszyn J. The Molecular Basis of Canine Melanoma: Pathogenesis and Trends in Diagnosis and Therapy. J. Vet. Intern. Med. 1999;13:163–174. doi: 10.1111/j.1939-1676.1999.tb02173.x. PubMed DOI

Prouteau A., Andre C. Canine Melanomas as Models for Human Melanomas: Clinical, Histological, and Genetic Comparison. Genes. 2019;10:501. doi: 10.3390/genes10070501. PubMed DOI PMC

Koenig A., Bianco S.R., Fosmire S., Wojcieszyn J., Modiano J.F. Expression and Significance of p53, rb, p21/waf-1, p16/ink-4a, and PTEN Tumor Suppressors in Canine Melanoma. Vet. Pathol. 2002;39:458–472. doi: 10.1354/vp.39-4-458. PubMed DOI

Gillard M., Cadieu E., De Brito C., Abadie J., Vergier B., Devauchelle P., Degorce F., Dreano S., Primot A., Dorso L., et al. Naturally Occurring Melanomas in Dogs as Models for Non-UV Pathways of Human Melanomas. Pigment Cell Melanoma Res. 2014;27:90–102. doi: 10.1111/pcmr.12170. PubMed DOI

Pisamai S., Rungsipipat A., Kalpravidh C., Suriyaphol G. Gene Expression Profiles of Cell Adhesion Molecules, Matrix Metalloproteinases and Their Tissue Inhibitors in Canine Oral Tumors. Res. Vet. Sci. 2017;113:94–100. doi: 10.1016/j.rvsc.2017.09.009. PubMed DOI

Brachelente C., Cappelli K., Capomaccio S., Porcellato I., Silvestri S., Bongiovanni L., De Maria R., Verini Supplizi A., Mechelli L., Sforna M. Transcriptome Analysis of Canine Cutaneous Melanoma and Melanocytoma Reveals a Modulation of Genes Regulating Extracellular Matrix Metabolism and Cell Cycle. Sci. Rep. 2017;7:6386. doi: 10.1038/s41598-017-06281-1. PubMed DOI PMC

Hendricks W.P.D., Zismann V., Sivaprakasam K., Legendre C., Poorman K., Tembe W., Perdigones N., Kiefer J., Liang W., DeLuca V., et al. Somatic Inactivating PTPRJ Mutations and Dysregulated Pathways Identified in Canine Malignant Melanoma by Integrated Comparative Genomic Analysis. PLoS Genetics. 2018;14 doi: 10.1371/journal.pgen.1007589. PubMed DOI PMC

Valentine B.A. Equine Melanocytic Tumors: A Retrospective Study of 53 Horses (1988 to 1991) J. Vet. Intern. Med. 1995;9:291–297. doi: 10.1111/j.1939-1676.1995.tb01087.x. PubMed DOI

Fleury C., Berard F., Balme B., Thomas L. The Study of Cutaneous Melanomas in Camargue-Type Gray-Skinned Horses (1): Clinical-Pathological Characterization. Pigment Cell Res. 2000;13:39–46. doi: 10.1034/j.1600-0749.2000.130108.x. PubMed DOI

Vostry L., Hofmanova B., Vydrova H., Pribyl J., Majzlik I. Estimation of Genetic Parameters for Melanoma in the Old Kladruber Horse. Czech J. Anim. Sci. 2012;57:75–82. doi: 10.17221/5134-CJAS. DOI

Curik I., Druml T., Seltenhammer M., Sundstrom E., Pielberg G.R., Andersson L., Solkner J. Complex Inheritance of Melanoma and Pigmentation of Coat and Skin in Grey Horses. PLoS Genetics. 2013;9:e1003248. doi: 10.1371/journal.pgen.1003248. PubMed DOI PMC

Campagne C., Jule S., Bernex F., Estrada M., Aubin Houzelstein G., Panthier J.J., Egidy G. RACK1, a Clue to the Diagnosis of Cutaneous Melanomas in Horses. BMC Vet. Res. 2012;8:95. doi: 10.1186/1746-6148-8-95. PubMed DOI PMC

Thirloway L., Rudolph R., Leipold H.W. Malignant Melanomas in a Duroc Boar. J. Am. Vet. Med. Assoc. 1977;170:345–347. PubMed

Fisher L.F., Olander H.J. Spontaneous Neoplasms of Pigs-A Study of 31 Cases. J. Comp. Pathol. 1978;88:505–517. doi: 10.1016/0021-9975(78)90004-X. PubMed DOI

Baba A.I., Gaboreanu M., Rotaru O., Kwieczinsky R. Malignant Melanomas in Farm Animals. Morphol. Embryol. (Bucur.) 1983;29:191–194. PubMed

Perez J., Garcia P.M., Bautista M.J., Millan Y., Ordas J., De Las Mulas J.M. Immunohistochemical Characterization of Tumor Cells and Inflammatory Infiltrate Associated with Cutaneous Melanocytic Tumors of Duroc and Iberian Swine. Vet. Pathol. 2002;39:445–451. doi: 10.1354/vp.39-4-445. PubMed DOI

Bundza A., Feltmate T.E. Melanocytic Cutaneous Lesions and Melanotic Regional Lymph Nodes in Slaughter Swine. Can. J. Vet. Res. Rev. Can. Rech. Vet. 1990;54:301–304. PubMed PMC

Hordinsky M.K., Ruth G., King R. Inheritance of Melanocytic Tumors in Duroc Swine. J. Hered. 1985;76:385–386. PubMed

Strafuss A.C., Dommert A.R., Tumbleson M.E., Middleton C.C. Cutaneous Melanoma in Miniature Swine. Lab. Anim. Care. 1968;18:165–169. PubMed

Millikan L.E., Boylon J.L., Hook R.R., Manning P.J. Melanoma in Sinclair Swine: A New Animal Model. J. Invest. Dermatol. 1974;62:20–30. doi: 10.1111/1523-1747.ep12676714. PubMed DOI

Hook R.R., Aultman M.D., Adelstein E.H., Oxenhandler R.W., Millikan L.E., Middleton C.C. Influence of Selective Breeding on the Incidence of Melanomas in Sinclair Miniature Swine. Int. J. Cancer. 1979;24:668–672. doi: 10.1002/ijc.2910240522. PubMed DOI

Manning P.J., Millikan L.E., Cox V.S., Carey K.D., Hook R.R. Congenital Cutaneous and Visceral Melanomas of Sinclair Miniature Swine: Three Case Reports. J. Natl. Cancer Inst. 1974;52:1559–1566. doi: 10.1093/jnci/52.5.1559. PubMed DOI

Oxenhandler R.W., Adelstein E.H., Haigh J.P., Hook R.R., Clark W.H. Malignant Melanoma in the Sinclair Miniature Swine: An Autopsy Study of 60 Cases. Am. J. Pathol. 1979;96:707–720. PubMed PMC

Hook R.R., Berkelhammer J., Oxenhandler R.W. Melanoma: Sinclair Swine Melanoma. Am. J. Pathol. 1982;108:130–133. PubMed PMC

Misfeldt M.L., Grimm D.R. Sinclair Miniature Swine: An Animal Model of Human Melanoma. Vet. Immunol. Immunopathol. 1994;43:167–175. doi: 10.1016/0165-2427(94)90133-3. PubMed DOI

Greene J.F., Townsend J.S., Amoss M.S. Histopathology of Regression in Sinclair Swine Model of Melanoma. Lab. Investig. J. Tech. Methods Pathol. 1994;71:17–24. PubMed

Morgan C.D., Measel J.W., Amoss M.S., Rao A., Greene J.F. Immunophenotypic Characterization of Tumor Infiltrating Lymphocytes and Peripheral Blood Lymphocytes Isolated from Melanomatous and Non-Melanomatous Sinclair Miniature Swine. Vet. Immunol. Immunopathol. 1996;55:189–203. doi: 10.1016/S0165-2427(96)05621-8. PubMed DOI

Cui J., Chen D., Misfeldt M.L., Swinfard R.W., Bystryn J.C. Antimelanoma Antibodies in Swine with Spontaneously Regressing Melanoma. Pigment Cell Res. 1995;8:60–63. doi: 10.1111/j.1600-0749.1995.tb00775.x. PubMed DOI

Gossett R., Kier A.B., Schroeder F., McConkey D., Fadok V., Amoss M.S. Cycloheximide-Induced Apoptosis in Melanoma Cells Derived from Regressing Cutaneous Tumours of SINCLAIR Swine. J. Comp. Pathol. 1996;115:353–372. doi: 10.1016/S0021-9975(96)80071-5. PubMed DOI

Pathak S., Multani A.S., McConkey D.J., Imam A.S., Amoss M.S. Spontaneous Regression of Cutaneous Melanoma in Sinclair Swine is Associated with Defective Telomerase Activity and Extensive Telomere Erosion. Int. J. Oncol. 2000;17:1219–1243. doi: 10.3892/ijo.17.6.1219. PubMed DOI

Tissot R.G., Beattie C.W., Amoss M.S. The Swine Leucocyte Antigen (SLA) Complex and Sinclair Swine Cutaneous Malignant Melanoma. Anim. Genet. 1989;20:51–57. doi: 10.1111/j.1365-2052.1989.tb00841.x. PubMed DOI

Tissot R.G., Beattie C.W., Amoss M.S. Inheritance of Sinclair Swine Cutaneous Malignant Melanoma. Cancer Res. 1987;47:5542–5545. PubMed

Blangero J., Tissot R.G., Beattie C.W., Amoss M.S. Genetic Determinants of Cutaneous Malignant Melanoma in Sinclair Swine. Br. J. Cancer. 1996;73:667–671. doi: 10.1038/bjc.1996.116. PubMed DOI PMC

Pathak S., Amoss M.S. Genetic Predisposition and Specific Chromosomal Defects Associated with Sinclair Swine Malignant Melanomas. Int. J. Oncol. 1997;11:53–57. doi: 10.3892/ijo.11.1.53. PubMed DOI

Muller S., Wanke R., Distl O. Inheritance of Melanocytic Lesions and Their Association with the White Colour Phenotype in Miniature Swine. J. Anim. Breed. Genet. 2001;118:275–283. doi: 10.1046/j.1439-0388.2001.00280.x. DOI

Muller S., Wanke R., Distl O. Segregation of Pigment Cell Anomalies in Munich Miniature Swine (MMS) Troll Crossed with German Landrace. DTW Dtsch. Tierarztl. Wochenschr. 1995;102:391–394. PubMed

Buttner M., Wanke R., Obermann B. Natural Killer (NK) Activity of Porcine Blood Lymphocytes Against Allogeneic Melanoma Target Cells. Vet. Immunol. Immunopathol. 1991;29:89–103. doi: 10.1016/0165-2427(91)90055-H. PubMed DOI PMC

Dieckhoff B., Puhlmann J., Buscher K., Hafner Marx A., Herbach N., Bannert N., Buttner M., Wanke R., Kurth R., Denner J. Expression of Porcine Endogenous Retroviruses (PERVs) in Melanomas of Munich Miniature Swine (MMS) Troll. Vet. Microbiol. 2007;123:53–68. doi: 10.1016/j.vetmic.2007.02.024. PubMed DOI

Buscher K., Trefzer U., Hofmann M., Sterry W., Kurth R., Denner J. Expression of Human Endogenous Retrovirus K in Melanomas and Melanoma Cell Lines. Cancer Res. 2005;65:4172–4180. doi: 10.1158/0008-5472.CAN-04-2983. PubMed DOI

Gonzalez Cao M., Iduma P., Karachaliou N., Santarpia M., Blanco J., Rosell R. Human Endogenous Retroviruses and Cancer. Cancer Biol. Med. 2016;13:483–488. PubMed PMC

Glodek P. Breeding Program and Population Standards of the Goettingen Miniature Swine. In: Tumbleson M.E., editor. Swine in Biomedical Research. Volume 1. Plenum Press; New York, NY, USA: 1986. pp. 23–28.

Horak V., Fortyn K., Hruban V., Klaudy J. Hereditary Melanoblastoma in Miniature Pigs and its Successful Therapy by Devitalization Technique. Cell. Mol. Biol. Noisy Gd. Fr. 1999;45:1119–1129. PubMed

Hruban V., Horak V., Fortyn K., Hradecky J., Klaudy J., Smith D.M., Reisnerova H., Majzlik I. Inheritance of Malignant Melanoma in the MeLiM Strain of Miniature Pigs. Vet. Med. (Praha) 2004;49:453–459. doi: 10.17221/5739-VETMED. DOI

Vincent Naulleau S., Le Chalony C., Leplat J.J., Bouet S., Bailly C., Spatz A., Vielh P., Avril M.F., Tricaud Y., Gruand J., et al. Clinical and Histopathological Characterization of Cutaneous Melanomas in the Melanoblastoma-Bearing Libechov Minipig Model. Pigment Cell Melanoma Res. 2004;17:24–35. doi: 10.1046/j.1600-0749.2003.00101.x. PubMed DOI

Fortyn K., Hruban V., Horak V. Treatment of Malignant Melanoma. Br. J. Surg. 1994;81:146–147. doi: 10.1002/bjs.1800810155. PubMed DOI

Fortyn K., Hruban V., Horak V., Tichy J. Exceptional Occurrence and Extent of Malignant Melanoma in Pig. Vet. Med. (Praha) 1998;43:87–91.

Fortyn K., Hruban V., Horak V., Hradecky J., Tichy J. Melanoblastoma in Laboratory Minipigs: A Model for Studying Human Malignant Melan6oma. Vet. Med. (Praha) 1994;39:597–604. PubMed

Al Shaer M., Gollapudi D., Papageorgio C. Melanoma Biomarkers: Vox Clamantis in Deserto (Review) Oncol. Lett. 2010;1:399–405. doi: 10.3892/ol_00000070. PubMed DOI PMC

Pohlreich P., Stribrna J., Kleibl Z., Horak V., Klaudy J. Detection of Neoplastic Cells in Blood of Miniature Pigs with Hereditary Melanoma. Vet. Med. (Praha) 2001;46:199–204. doi: 10.17221/7880-VETMED. DOI

De Souza L.M., Robertson B.M., Robertson G.P. Future of Circulating Tumor Cells in the Melanoma Clinical and Research Laboratory Settings. Cancer Lett. 2017;392:60–70. doi: 10.1016/j.canlet.2017.01.023. PubMed DOI

Rodic S., Mihalcioiu C., Saleh R.R. Detection Methods of Circulating Tumor Cells in Cutaneous Melanoma: A Systematic Review. Crit. Rev. Oncol. Hematol. 2014;91:74–92. doi: 10.1016/j.critrevonc.2014.01.007. PubMed DOI

Borovansky J., Horak V., Elleder M., Fortyn K., Smit N.P., Kolb A.M. Biochemical Characterization of a New Melanoma Model-The Minipig MeLiM Strain. Melanoma Res. 2003;13:543–548. doi: 10.1097/00008390-200312000-00001. PubMed DOI

Millikan L.E., Hook R.R., Manning P.J. Immunobiology of Melanoma. Gross and Ultrastructural Studies in a New Melanoma Model: The Sinclair Swine. Yale J. Biol. Med. 1973;46:631–645. PubMed PMC

Hunter J.A., Zaynoun S., Paterson W.D., Bleehen S.S., Mackie R., Cochran A.J. Cellular Fine Structure in the Invasive Nodules of Different Histogenetic Types of Malignant Melanoma. Br. J. Dermatol. 1978;98:255–272. doi: 10.1111/j.1365-2133.1978.tb06152.x. PubMed DOI

Borovansky J. Quantitative Parameters of Melanomas Differentiation. Neoplasma. 1978;25:349–352. PubMed

Ochi Y., Atsumi S., Aoyagi T., Umezawa K. Inhibition of Tumor Cell Invasion in the Boyden Chamber Assay by a Mannosidase Inhibitor, Mannostatin A. Anticancer Res. 1993;13:1421–1424. PubMed

Borovansky J., Hach P. Disparate behaviour of Two Melanosomal Enzymes (α-Mannosidase and γ-Glutamyltransferase) Cell. Mol. Biol. Noisy Gd. Fr. 1999;45:1047–1052. PubMed

Egidy G., Jule S., Bosse P., Bernex F., Geffrotin C., Vincent Naulleau S., Horak V., Sastre Garau X., Panthier J.J. Transcription Analysis in the MeLiM Swine Model Identifies RACK1 as a Potential Marker of Malignancy for Human Melanocytic Proliferation. Mol. Cancer. 2008;7:34. doi: 10.1186/1476-4598-7-34. PubMed DOI PMC

Xia J., Wang Y., Li F., Wang J., Mu Y., Mei X., Li X., Zhu W., Jin X., Yu K. Expression of Microphthalmia Transcription Factor, S100 Protein, and HMB-45 in Malignant Melanoma and Pigmented Nevi. Biomed. Rep. 2016;5:327–331. doi: 10.3892/br.2016.732. PubMed DOI PMC

Planska D., Burocziova M., Strnadel J., Horak V. Immunohistochemical Analysis of Collagen IV and Laminin Expression in Spontaneous Melanoma Regression in the Melanoma-Bearing Libechov Minipig. Acta Histochem. Cytochem. 2015;48:15–26. doi: 10.1267/ahc.14020. PubMed DOI PMC

Geffrotin C., Horak V., Crechet F., Tricaud Y., Lethias C., Vincent Naulleau S., Vielh P. Opposite Regulation of Tenascin-C and Tenascin-X in MeLiM Swine Heritable Cutaneous Malignant Melanoma. Biochim. Biophys. Acta BBA Gen. Subj. 2000;1524:196–202. doi: 10.1016/S0304-4165(00)00158-6. PubMed DOI

Planska D., Kovalska J., Cizkova J., Horak V. Tissue Rebuilding During Spontaneous Regression of Melanoma in the Melanoma-bearing Libechov Minipig. Anticancer Res. 2018;38:4629–4636. doi: 10.21873/anticanres.12767. PubMed DOI

Engbring J.A., Kleinman H.K. The Basement Membrane Matrix in Malignancy. J. Pathol. 2003;200:465–470. doi: 10.1002/path.1396. PubMed DOI

Pasco S., Ramont L., Maquart F.X., Monboisse J.C. Control of Melanoma Progression by Various Matrikines from Basement Membrane Macromolecules. Crit. Rev. Oncol. Hematol. 2004;49:221–233. doi: 10.1016/j.critrevonc.2003.09.006. PubMed DOI

Hofmann U.B., Houben R., Brocker E.B., Becker J.C. Role of Matrix Metalloproteinases in Melanoma Cell Invasion. Biochimie. 2005;87:307–314. doi: 10.1016/j.biochi.2005.01.013. PubMed DOI

Kaariainen E., Nummela P., Soikkeli J., Yin M., Lukk M., Jahkola T., Virolainen S., Ora A., Ukkonen E., Saksela O., et al. Switch to an Invasive Growth Phase in Melanoma is Associated with Tenascin-C, Fibronectin, and Procollagen-I Forming Specific Channel Structures for Invasion. J. Pathol. 2006;210:181–191. doi: 10.1002/path.2045. PubMed DOI

Shao H., Kirkwood J.M., Wells A. Tenascin-C Signaling in Melanoma. Cell Adhes. Migr. 2014;9:125–130. doi: 10.4161/19336918.2014.972781. PubMed DOI PMC

Anyz J., Vyslouzilova L., Vaculovic T., Tvrdonova M., Kanicky V., Haase H., Horak V., Stepankova O., Heger Z., Adam V. Spatial Mapping of Metals in Tissue-Sections Using Combination of Mass-Spectrometry and Histology Through Image Registration. Sci. Rep. 2017;7:40169. doi: 10.1038/srep40169. PubMed DOI PMC

Gorodetsky R., Sheskin J., Weinreb A. Iron, Copper, and Zinc Concentrations in Normal Skin and in Various Nonmalignant and Malignant Lesions. Int. J. Dermatol. 1986;25:440–445. doi: 10.1111/j.1365-4362.1986.tb03449.x. PubMed DOI

Guran R., Vanickova L., Horak V., Krizkova S., Michalek P., Heger Z., Zitka O., Adam V. MALDI MSI of MeLiM Melanoma: Searching for Differences in Protein Profiles. PLoS ONE. 2017;12:e0189305. doi: 10.1371/journal.pone.0189305. PubMed DOI PMC

Krizkova S., Fabrik I., Adam V., Kukacka J., Prusa R., Chavis G.J., Trnkova L., Strnadel J., Horak V., Kizek R. Utilizing of Adsorptive Transfer Stripping Technique Brdicka Reaction for Determination of Metallothioneins Level in Melanoma Cells, Blood Serum and Tissues. Sensors. 2008;8:3106–3122. doi: 10.3390/s8053106. PubMed DOI PMC

Weinlich G. Metallothionein-Overexpression as a Prognostic Marker in Melanoma. G. Ital. Dermatol. E Venereol. Organo Uff. Soc. Ital. Dermatol. E Sifilogr. 2009;144:27–38. PubMed

Cizkova J., Erbanova M., Sochor J., Jindrova A., Strnadova K., Horak V. Relationship Between Haematological Profile and Progression or Spontaneous Regression of Melanoma in the Melanoma-Bearing Libechov Minipigs. Vet. J. Lond. Engl. 1997. 2019;249:1–9. PubMed

Blanc F., Crechet F., Bruneau N., Piton G., Leplat J.J., Andreoletti F., Egidy G., Vincent Naulleau S., Bourneuf E. Impact of a CD4 Gene Haplotype on the Immune Response in Minipigs. Immunogenetics. 2018;70:209–222. doi: 10.1007/s00251-017-1037-z. PubMed DOI

Du Z.Q., Vincent Naulleau S., Gilbert H., Vignoles F., Crechet F., Shimogiri T., Yasue H., Leplat J.J., Bouet S., Gruand J., et al. Detection of Novel Quantitative Trait Loci for Cutaneous Melanoma by Genome-Wide Scan in the MeLiM Swine Model. Int. J. Cancer. 2007;120:303–320. PubMed

Le Chalony C., Renard C., Vincent Naulleau S., Crechet F., Leplat J.J., Tricaud Y., Horak V., Gruand J., Le Roy P., Frelat G., et al. CDKN2A Region Polymorphism and Genetic Susceptibility to Melanoma in the Melim Swine Model of Familial Melanoma. Int. J. Cancer. 2003;103:631–635. doi: 10.1002/ijc.10871. PubMed DOI

Geffrotin C., Crechet F., Le Roy P., Le Chalony C., Leplat J.J., Iannuccelli N., Barbosa A., Renard C., Gruand J., Milan D., et al. Identification of Five Chromosomal Regions Involved in Predisposition to Melanoma by Genome-Wide Scan in the MeLiM Swine Model. Int. J. Cancer. 2004;110:39–50. doi: 10.1002/ijc.20053. PubMed DOI

Bourneuf E., Du Z.Q., Estelle J., Gilbert H., Crechet F., Piton G., Milan D., Geffrotin C., Lathrop M., Demenais F., et al. Genetic and Functional Evaluation of MITF as a Candidate Gene for Cutaneous Melanoma Predisposition in Pigs. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 2011;22:602–612. doi: 10.1007/s00335-011-9334-6. PubMed DOI

Fernandez Rodriguez A., Estelle J., Blin A., Munoz M., Crechet F., Demenais F., Vincent Naulleau S., Bourneuf E. KIT and Melanoma Predisposition in Pigs: Sequence Variants and Association Analysis. Anim. Genet. 2014;45:445–448. doi: 10.1111/age.12136. PubMed DOI

Rambow F., Piton G., Bouet S., Leplat J.J., Baulande S., Marrau A., Stam M., Horak V., Vincent Naulleau S. Gene Expression Signature for Spontaneous Cancer Regression in Melanoma Pigs. Neoplasia. 2008;10:714. doi: 10.1593/neo.08344. PubMed DOI PMC

Rambow F., Malek O., Geffrotin C., Leplat J.J., Bouet S., Piton G., Hugot K., Bevilacqua C., Horak V., Vincent Naulleau S. Identification of Differentially Expressed Genes in Spontaneously Regressing Melanoma Using the MeLiM Swine Model. Pigment Cell Melanoma Res. 2008;21:147–161. doi: 10.1111/j.1755-148X.2008.00442.x. PubMed DOI

Bourneuf E., Estelle J., Blin A., Crechet F., del Pilar Schneider M., Gilbert H., Brossard M., Vaysse A., Lathrop M., Vincent Naulleau S., et al. New Susceptibility Loci for Cutaneous Melanoma Risk and Progression Revealed Using a Porcine Model. Oncotarget. 2018;9:27682–27697. doi: 10.18632/oncotarget.25455. PubMed DOI PMC

Sun X., Gao L., Chien H.Y., Li W.C., Zhao J. The Regulation and Function of the NUAK Family. J. Mol. Endocrinol. 2013;51:R15–R22. doi: 10.1530/JME-13-0063. PubMed DOI

Xu X., Hussain W.M., Vijai J., Offit K., Rubin M.A., Demichelis F., Klein R.J. Variants at IRX4 as Prostate Cancer Expression Quantitative Trait Loci. Eur. J. Hum. Genet. EJHG. 2014;22:558–563. doi: 10.1038/ejhg.2013.195. PubMed DOI PMC

Sanchez Tena S., Cubillos Rojas M., Schneider T., Rosa J.L. Functional and Pathological Relevance of HERC Family Proteins: A Decade Later. Cell. Mol. Life Sci. 2016;73:1955–1968. doi: 10.1007/s00018-016-2139-8. PubMed DOI PMC

Fattore L., Costantini S., Malpicci D., Ruggiero C.F., Ascierto P.A., Croce C.M., Mancini R., Ciliberto G. MicroRNAs in Melanoma Development and Resistance to Target Therapy. Oncotarget. 2017;8 doi: 10.18632/oncotarget.14763. PubMed DOI PMC

Baco M., Chu C.Y., Bouet S., Rogel Gaillard C., Bourneuf E., Le Provost F., Chu C.Y., Vincent Naulleau S. Analysis of Melanoma-Related microRNAs Expression During the Spontaneous Regression of Cutaneous Melanomas in MeLiM Pigs. Pigment Cell Melanoma Res. 2014;27:668–670. doi: 10.1111/pcmr.12243. PubMed DOI

So K.A., Hong J.H., Jin H.M., Kim J.W., Song J.Y., Lee J.K., Lee N.W. The Prognostic Significance of Preoperative Leukocytosis in Epithelial Ovarian Carcinoma: A Retrospective Cohort Study. Gynecol. Oncol. 2014;132:551–555. doi: 10.1016/j.ygyno.2014.01.010. PubMed DOI

Azab B., Mohammad F., Shah N., Vonfrolio S., Lu W., Kedia S., Bloom S.W. The Value of the Pretreatment Neutrophil Lymphocyte Ratio vs. Platelet Lymphocyte Ratio in Predicting the Long-Term Survival in Colorectal Cancer. Cancer Biomark. Sect. Dis. Markers. 2014;14:303–312. doi: 10.3233/CBM-140416. PubMed DOI

Zhang H., Xia H., Zhang L., Zhang B., Yue D., Wang C. Clinical Significance of Preoperative Neutrophil-Lymphocyte vs Platelet-Lymphocyte Ratio in Primary Operable Patients with Non-Small Cell Lung Cancer. Am. J. Surg. 2015;210:526–535. doi: 10.1016/j.amjsurg.2015.03.022. PubMed DOI

Feng L., Gu S., Wang P., Chen H., Chen Z., Meng Z., Liu L. White Blood Cell and Granulocyte Counts Are Independent Predictive Factors for Prognosis of Advanced Pancreatic Caner. Gastroenterol. Res. Pract. 2018;2018:8096234. doi: 10.1155/2018/8096234. PubMed DOI PMC

Cananzi F.C.M., Dalgleish A., Mudan S. Surgical Management of Intraabdominal Metastases from Melanoma: Role of the Neutrophil to Lymphocyte Ratio as a Potential Prognostic Factor. World J. Surg. 2014;38:1542–1550. doi: 10.1007/s00268-013-2418-6. PubMed DOI

Cassidy M.R., Wolchok R.E., Zheng J., Panageas K.S., Wolchok J.D., Coit D., Postow M.A., Ariyan C. Neutrophil to Lymphocyte Ratio is Associated With Outcome During Ipilimumab Treatment. EBioMedicine. 2017;18:56–61. doi: 10.1016/j.ebiom.2017.03.029. PubMed DOI PMC

Davis J.L., Ripley R.T., Frankel T.L., Maric I., Lozier J.N., Rosenberg S.A. Paraneoplastic Granulocytosis in Metastatic Melanoma. Melanoma Res. 2010;20:326–329. doi: 10.1097/CMR.0b013e328339da1e. PubMed DOI PMC

Ferrucci P.F., Gandini S., Battaglia A., Alfieri S., Di Giacomo A.M., Giannarelli D., Cappellini G.C.A., De Galitiis F., Marchetti P., Amato G., et al. Baseline Neutrophil-To-Lymphocyte Ratio is Associated with Outcome of Ipilimumab-Treated Metastatic Melanoma Patients. Br. J. Cancer. 2015;112:1904–1910. doi: 10.1038/bjc.2015.180. PubMed DOI PMC

Wade R.G., Robinson A.V., Lo M.C.I., Keeble C., Marples M., Dewar D.J., Moncrieff M.D.S., Peach H. Baseline Neutrophil-Lymphocyte and Platelet-Lymphocyte Ratios as Biomarkers of Survival in Cutaneous Melanoma: A Multicenter Cohort Study. Ann. Surg. Oncol. 2018;25:3341–3349. doi: 10.1245/s10434-018-6660-x. PubMed DOI PMC

Rachidi S., Kaur M., Lautenschlaeger T., Li Z. Platelet Count Correlates with Stage and Predicts Survival in Melanoma. Platelets. 2019:1–5. doi: 10.1080/09537104.2019.1573977. PubMed DOI

Tas F., Erturk K. Anemia in Cutaneous Malignant Melanoma: Low Blood Hemoglobin Level is Associated with Nodal Involvement, Metastatic Disease, and Worse Survival. Nutr. Cancer. 2018;70:236–240. doi: 10.1080/01635581.2018.1412475. PubMed DOI

Busti F., Marchi G., Ugolini S., Castagna A., Girelli D. Anemia and Iron Deficiency in Cancer Patients: Role of Iron Replacement Therapy. Pharm. Basel Switz. 2018;11 doi: 10.3390/ph11040094. PubMed DOI PMC

Weinstein D.A. Inappropriate Expression of Hepcidin is Associated with Iron Refractory Anemia: Implications for the Anemia of Chronic Disease. Blood. 2002;100:3776–3781. doi: 10.1182/blood-2002-04-1260. PubMed DOI

Porto G. Iron Overload and Immunity. World J. Gastroenterol. 2007;13:4707. doi: 10.3748/wjg.v13.i35.4707. PubMed DOI PMC

Vyoral D., Petrak J. Hepcidin: A Direct Link Between Iron Metabolism and Immunity. Int. J. Biochem. Cell Biol. 2005;37:1768–1773. doi: 10.1016/j.biocel.2005.02.023. PubMed DOI

Gonzalez H., Hagerling C., Werb Z. Roles of the Immune System in Cancer: From Tumor Initiation to Metastatic Progression. Genes Dev. 2018;32:1267–1284. doi: 10.1101/gad.314617.118. PubMed DOI PMC

Antohe M., Nedelcu R.I., Nichita L., Popp C.G., Cioplea M., Brinzea A., Hodorogea A., Calinescu A., Balaban M., Ion D.A., et al. Tumor Infiltrating Lymphocytes: The Regulator of Melanoma Evolution. Oncol. Lett. 2019;17:4155–4161. doi: 10.3892/ol.2019.9940. PubMed DOI PMC

Clemente C.G., Mihm M.C., Bufalino R., Zurrida S., Collini P., Cascinelli N. Prognostic Value of Tumor Infiltrating Lymphocytes in the Vertical Growth Phase of Primary Cutaneous Melanoma. Cancer. 1996;77:1303–1310. doi: 10.1002/(SICI)1097-0142(19960401)77:7<1303::AID-CNCR12>3.0.CO;2-5. PubMed DOI

Van Houdt I.S., Sluijter B.J.R., Moesbergen L.M., Vos W.M., De Gruijl T.D., Molenkamp B.G., Van Den Eertwegh A.J.M., Hooijberg E., Van Leeuwen P.A.M., Meijer C.J.L.M., et al. Favorable Outcome in Clinically Stage II Melanoma Patients is Associated with the Presence of Activated Tumor Infiltrating T-Lymphocytes and Preserved MHC Class I Antigen Expression. Int. J. Cancer. 2008;123:609–615. doi: 10.1002/ijc.23543. PubMed DOI

Rohaan M.W., Van Den Berg J.H., Kvistborg P., Haanen J.B.A.G. Adoptive Transfer of Tumor-Infiltrating lymphocytes in Melanoma: A Viable Treatment Option. J. Immunother. Cancer. 2018;6:102. doi: 10.1186/s40425-018-0391-1. PubMed DOI PMC

Cizkova J., Sinkorova Z., Strnadova K., Cervinkova M., Horak V., Sinkora J., Stepanova K., Sinkora M. The Role of αβ T-Cells in Spontaneous Regression of Melanoma Tumors in Swine. Dev. Comp. Immunol. 2019;92:60–68. doi: 10.1016/j.dci.2018.10.001. PubMed DOI

Overgaard N.H., Jung J.W., Steptoe R.J., Wells J.W. CD4+/CD8+ Double-Positive T Cells: More Than Just a Developmental Stage? J. Leukoc. Biol. 2015;97:31–38. doi: 10.1189/jlb.1RU0814-382. PubMed DOI

Pomorska Mol M., Markowska Daniel I. AGE-Dependent Changes in Relative and Absolute Size of Lymphocyte Subsets in the Blood of Pigs from Birth to Slaughter. Bull. Vet. Inst. Pulawy. 2011;55:305–310.

Bagot M., Echchakir H., Mami Chouaib F., Delfau Larue M.H., Charue D., Bernheim A., Chouaib S., Boumsell L., Bensussan A. Isolation of Tumor-Specific Cytotoxic CD4+ and CD4+CD8dim+ T-Cell Clones Infiltrating a Cutaneous T-Cell Lymphoma. Blood. 1998;91:4331–4341. doi: 10.1182/blood.V91.11.4331. PubMed DOI

De Marchi S.U., Stinco G., Errichetti E., Bonin S., Di Meo N., Trevisan G. The Influence of the Coexpression of CD4 and CD8 in Cutaneous Lesions on Prognosis of Mycosis Fungoides: A Preliminary Study. J. Skin Cancer. 2014;2014:624143. doi: 10.1155/2014/624143. PubMed DOI PMC

Desfrançois J., Moreau Aubry A., Vignard V., Godet Y., Khammari A., Dreno B., Jotereau F., Gervois N. Double Positive CD4CD8 Alphabeta T Cells: A New Tumor-Reactive Population in Human Melanomas. PLoS ONE. 2010;5:e8437. doi: 10.1371/journal.pone.0008437. PubMed DOI PMC

Roy S., Trinchieri G. Microbiota: A Key Orchestrator of Cancer Therapy. Nat. Rev. Cancer. 2017;17:271–285. doi: 10.1038/nrc.2017.13. PubMed DOI

McQuade J.L., Daniel C.R., Helmink B.A., Wargo J.A. Modulating the Microbiome to Improve Therapeutic Response in Cancer. Lancet Oncol. 2019;20:e77–e91. doi: 10.1016/S1470-2045(18)30952-5. PubMed DOI

Warner A.B., McQuade J.L. Modifiable Host Factors in Melanoma: Emerging Evidence for Obesity, Diet, Exercise, and the Microbiome. Curr. Oncol. Rep. 2019;21:72. doi: 10.1007/s11912-019-0814-2. PubMed DOI PMC

Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V., Prieto P.A., Vicente D., Hoffman K., Wei S.C., et al. Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science. 2018;359:97–103. doi: 10.1126/science.aan4236. PubMed DOI PMC

Salava A., Aho V., Pereira P., Koskinen K., Paulin L., Auvinen P., Lauerma A. Skin Microbiome in Melanomas and Melanocytic Nevi. Eur. J. Dermatol. EJD. 2016;26:49–55. doi: 10.1684/ejd.2015.2696. PubMed DOI

Svejstil R., Salmonova H., Cizkova J. Analysis of Cutaneous Microbiota of Piglets with Hereditary Melanoma. Sci. Agric. Bohem. 2018;49:285–290. doi: 10.2478/sab-2018-0035. DOI

Mrazek J., Mekadim C., Kucerova P., Svejstil R., Salmonova H., Vlasakova J., Tarasova R., Cizkova J., Cervinkova M. Melanoma-Related Changes in Skin Microbiome. Folia Microbiol. (Praha) 2019;64:435–442. doi: 10.1007/s12223-018-00670-3. PubMed DOI

Zhou Z., Chen J., Yao H., Hu H. Fusobacterium and Colorectal Cancer. Front. Oncol. 2018;8:371. doi: 10.3389/fonc.2018.00371. PubMed DOI PMC

Brennan C.A., Garrett W.S. Fusobacterium Nucleatum-Symbiont, Opportunist and Oncobacterium. Nat. Rev. Microbiol. 2019;17:156–166. doi: 10.1038/s41579-018-0129-6. PubMed DOI PMC

Yu L.C.H., Wei S.C., Ni Y.H. Impact of Microbiota in Colorectal Carcinogenesis: Lessons from Experimental Models. Intest. Res. 2018;16:346–357. doi: 10.5217/ir.2018.16.3.346. PubMed DOI PMC

Fortyn K., Hradecky J., Pazdera J., Klaudy J., Hruban V., Dvorak P., Matousek J., Tichy J., Kolin V. Experimental Elimination of Various Intestinal Segments by Means of Devascularization (Devitalization) Z. Exp. Chir. Transplant. Kunstl. Organe Organ Sekt. Exp. Chir. Ges. Chir. DDR. 1985;18:34–41. PubMed

Fortyn K., Hradecky J., Pazdera J., Klaudy J., Hruban V., Dvorak P., Matousek J., Tichy J., Kolin V. Small and Large Intestine Devascularization (Devitalization) and Potentials in the Therapeutic Use of this Operative Method. Z. Exp. Chir. Transplant. Kunstl. Organe Organ Sekt. Exp. Chir. Ges. Chir. DDR. 1985;18:42–50. PubMed

Vasek P., Krajnik J., Kopsky D.J., Kalina V., Frydrych M. Autologous Tumor Immunizing Devascularization of an Invasive Colorectal Cancer: A Case Report and Literature Review. Mol. Clin. Oncol. 2016;5:521–526. doi: 10.3892/mco.2016.1033. PubMed DOI PMC

Fortyn K., Hradecky J., Hruban V., Horak V., Dvorak P., Tichy J. Morphology of Regressive Changes in the Kidney Following Experimental Ischaemia. Int. Urol. Nephrol. 1987;19:9–19. doi: 10.1007/BF02549672. PubMed DOI

Fortyn K., Hruban V., Hradecky J., Tichy J., Dvorak P., Horak V. A Technique of the Segmental Devitalization of Kidneys in Experiment. Z. Exp. Chir. Transplant. Kunstl. Organe Organ Sekt. Exp. Chir. Ges. Chir. DDR. 1988;21:275–280. PubMed

Fortyn K., Hruban V., Hradecky J., Tichy J., Dvorak P., Horak V. The Devitalization of the Stomach by a Devascularization Technique. Acta Chir. Hung. 1988;29:163–172. PubMed

Fortyn K., Hruban V., Hradecky J., Tichy J., Dvorak P., Horak V. Experimental Devascularization (Devitalization) of the Rectum and Sigmoideum. Z. Exp. Chir. Transplant. Kunstl. Organe Organ Sekt. Exp. Chir. Ges. Chir. DDR. 1989;22:173–179. PubMed

Horak V., Moravkova A., Strnadel J., Hradecky J., Usvald D., Vannucci L. Devitalization as a Special Surgical Tumour Treatment Inducing Anti-Cancer Response–An Experimental Study in Two Animal Models; Proceedings of the CIMT Cancer Immunotherapy 6th Annual Meeting; Mainz, Germany. 15–16 May 2008.

Srivastava P.K., Udono H., Blachere N.E., Li Z. Heat Shock Proteins Transfer Peptides During Antigen Processing and CTL Priming. Immunogenetics. 1994;39:93–98. doi: 10.1007/BF00188611. PubMed DOI

Binder R.J., Blachere N.E., Srivastava P.K. Heat Shock Protein-Chaperoned Peptides but not Free Peptides Introduced into the Cytosol are Presented Efficiently by Major Histocompatibility Complex I Molecules. J. Biol. Chem. 2001;276:17163–17171. doi: 10.1074/jbc.M011547200. PubMed DOI

Singh Jasuja H., Hilf N., Arnold Schild D., Schild H. The Role of Heat Shock Proteins and Their Receptors in the Activation of the Immune System. Biol. Chem. 2001;382:629–636. doi: 10.1515/BC.2001.074. PubMed DOI

Hoos A., Levey D.L. Vaccination with Heat Shock Protein-Peptide Complexes: From Basic Science to Clinical Applications. Expert Rev. Vaccines. 2003;2:369–379. doi: 10.1586/14760584.2.3.369. PubMed DOI

Testori A., Richards J., Whitman E., Mann G.B., Lutzky J., Camacho L., Parmiani G., Tosti G., Kirkwood J.M., Hoos A., et al. Phase III Comparison of Vitespen, an Autologous Tumor-Derived Heat Shock Protein gp96 Peptide Complex Vaccine, with Physician’s Choice of Treatment for Stage IV Melanoma: The C-100-21 Study Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008;26:955–962. doi: 10.1200/JCO.2007.11.9941. PubMed DOI

Tosti G., Di Pietro A., Ferrucci P.F., Testori A. HSPPC-96 Vaccine in Metastatic Melanoma Patients: From the State of the Art to a Possible Future. Expert Rev. Vaccines. 2009;8:1513–1526. doi: 10.1586/erv.09.108. PubMed DOI

Di Pietro A., Tosti G., Ferrucci P.F., Testori A. The Immunological era in Melanoma Treatment: New Challenges for Heat Shock Protein-Based Vaccine in the Advanced Disease. Expert Opin. Biol. Ther. 2011;11:1395–1407. doi: 10.1517/14712598.2011.605353. PubMed DOI

Shevtsov M., Multhoff G. Heat Shock Protein-Peptide and HSP-Based Immunotherapies for the Treatment of Cancer. Front. Immunol. 2016;7:171. doi: 10.3389/fimmu.2016.00171. PubMed DOI PMC

Prather R.S., Shen M., Dai Y. Genetically Modified Pigs for Medicine and Agriculture. Biotechnol. Genet. Eng. Rev. 2008;25:245–265. PubMed

Flisikowska T., Kind A., Schnieke A. Genetically Modified Pigs to Model Human Diseases. J. Appl. Genet. 2014;55:53–64. doi: 10.1007/s13353-013-0182-9. PubMed DOI

Watson A.L., Carlson D.F., Largaespada D.A., Hackett P.B., Fahrenkrug S.C. Engineered Swine Models of Cancer. Front. Genet. 2016;7:78. doi: 10.3389/fgene.2016.00078. PubMed DOI PMC

Schachtschneider K.M., Schwind R.M., Newson J., Kinachtchouk N., Rizko M., Mendoza Elias N., Grippo P., Principe D.R., Park A., Overgaard N.H., et al. The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform. Front. Oncol. 2017;7:190. doi: 10.3389/fonc.2017.00190. PubMed DOI PMC

Vodicka P., Smetana K., Dvorankova B., Emerick T., Xu Y.Z., Ourednik J., Ourednik V., Motlik J. The Miniature Pig as an Animal Model in Biomedical Research. Ann. N. Y. Acad. Sci. 2005;1049:161–171. doi: 10.1196/annals.1334.015. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...