Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31756903
PubMed Central
PMC6995546
DOI
10.3390/biom9120752
PII: biom9120752
Knihovny.cz E-zdroje
- Klíčová slova
- hydrogen sulfide, inflammatory bowel disease, intestinal microbiome, lactic acid bacteria, sulfate-reducing bacteria, toxicity, ulcerative colitis,
- MeSH
- Bacteria klasifikace izolace a purifikace metabolismus MeSH
- feces mikrobiologie MeSH
- idiopatické střevní záněty mikrobiologie MeSH
- Lactobacillus účinky léků růst a vývoj MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mikrobiální viabilita účinky léků MeSH
- myši MeSH
- střeva mikrobiologie MeSH
- střevní mikroflóra účinky léků MeSH
- sulfan metabolismus farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- sulfan MeSH
UNLABELLED: The gut microbiota is a complex component of humans that depends on diet, host genome, and lifestyle. The background: The study purpose is to find relations between nutrition, intestinal lactic acid bacteria (LAB) from various environments (human, animal intestine, and yogurt) and sulfate-reducing microbial communities in the large intestine; to compare kinetic growth parameters of LAB; and to determine their sensitivity to different concentration of hydrogen sulfide produced by intestinal sulfate-reducing bacteria. METHODS: Microbiological (isolation and identification), biochemical (electrophoresis), molecular biology methods (DNA isolation and PCR analysis), and statistical processing (average and standard error calculations) of the results were used. THE RESULTS: The toxicity of hydrogen sulfide produced by sulfate-reducing bacteria, the survival of lactic acid bacteria, and minimal inhibitory concentrations (MIC) were determined. The measured hydrogen sulfide sensitivity values were the same for L. paracasei and L. reuteri (MIC > 1.1 mM). In addition, L. plantarum and L.fermentum showed also a similar sensitivity (MIC > 0.45 mM) but significantly (p < 0.05) lower than L.reuteri and L. paracasei (1.1 > 0.45 mM). L. paracasei and L. reuteri are more sensitive to hydrogen sulfide than L. fermentum and L. plantarum. L. pentosus was sensitive to the extremely low concentration of H2S (MIC > 0.15 mM). CONCLUSIONS: The Lactobacillus species were significantly sensitive to hydrogen sulfide, which is a final metabolite of intestinal sulfate-reducing bacteria. The results are definitely helpful for a better understanding of complicated interaction among intestinal microbiota and nutrition.
Zobrazit více v PubMed
Million M., Diallo A., Raoult D. Gut microbiota and malnutrition. Microb. Pathog. 2017;106:127–138. doi: 10.1016/j.micpath.2016.02.003. PubMed DOI
Pagliai G., Russo E., Niccolai E., Dinu M., Di Pilato V., Magrini A., Marcucci R. Influence of a 3-month low-calorie Mediterranean diet compared to the vegetarian diet on human gut microbiota and SCFA: The CARDIVEG Study. Eur. J. Nutr. 2019;58:1–14. doi: 10.1007/s00394-019-02050-0. PubMed DOI
Niccolai E., Boem F., Russo E., Amedei A. The Gut–Brain Axis in the Neuropsychological Disease Model of Obesity: A Classical Movie Revised by the Emerging Director “Microbiome”. Nutrients. 2019;11:156. doi: 10.3390/nu11010156. PubMed DOI PMC
Russo E., Bacci G., Chiellini C., Fagorzi C., Niccolai E., Taddei A., Miloeva M. Preliminary comparison of oral and intestinal human microbiota in patients with colorectal cancer: A pilot study. Front. Microbiol. 2018;8:2699. doi: 10.3389/fmicb.2017.02699. PubMed DOI PMC
Fijan S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int. J. Environ. Res. Public Health. 2014;11:4745–4767. doi: 10.3390/ijerph110504745. PubMed DOI PMC
Rayes N., Seehofer D., Neuhaus P. Prebiotics, probiotics, synbiotics in surgery - are they only trendy, truly effective or even dangerous? Langenbecks Arch. Surg. 2009;394:547–555. doi: 10.1007/s00423-008-0445-9. PubMed DOI
Stilesa M., Holzapfel W. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 1997;36:1–29. doi: 10.1016/S0168-1605(96)01233-0. PubMed DOI
Sheeladevi A., Ramanathan R. Lactic Acid Production Using Lactic Acid Bacteria under Optimized Conditions. Int. J. Pharm. Biol. Sci. Arch. 2011;2:1686–1691.
Zotta T., Ricciardi A., Ianniello R.G., Storti L.V., Glibota N.A., Parente E. Aerobic and respirative growth of heterofermentative lactic acidbacteria: A screening study. Food Microbiol. 2018;76:117–127. doi: 10.1016/j.fm.2018.02.017. PubMed DOI
Aguirre M., Collins M. Lactic acid bacteria and human clinical infection. J. Appl. Bacteriol. 1993;75:95–107. doi: 10.1111/j.1365-2672.1993.tb02753.x. PubMed DOI
Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulphate-reducing bacteria in gut contents of health subjects and patients with ulcerative colitis. FEMS Microbiol. Ecol. 1991;86:103–112. doi: 10.1111/j.1574-6968.1991.tb04799.x. DOI
Cummings J.H., Macfarlane G.T., Macfarlane S. Intestinal Bacteria and Ulcerative Colitis. Curr. Issues Intest. Microbiol. 2003;4:9–20. PubMed
Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. PubMed PMC
Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI
Kushkevych I., Fafula R., Parak T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI
Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochem. Pol. 2015;62:1037–1108. doi: 10.18388/abp.2014_845. PubMed DOI
Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol. J. Microbiol. 2015;64:107–114. PubMed
Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen Sulfide as a Toxic Product in the Small–Large Intestine Axis and its Role in IBD Development. J. Clin. Med. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI
Florin T.H., Neale G., Goretski S. Sulfate in food and beverages. J. Food Compos. Anal. 1993;6:140–151. doi: 10.1006/jfca.1993.1016. DOI
Ananthakrishnan A.N. Epidemiology and risk factors for IBD. Reviews Gastroenterology & Hepatology. Nat. Rev. Gastroenterol. Hepatol. 2015;12:205–217. PubMed
Weisburg W., Barns S., Pelletier D.L. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991;173:697–703. doi: 10.1128/jb.173.2.697-703.1991. PubMed DOI PMC
Bailey N.T.J. Statistical Methods in Biology. Cambridge University Press; Cambridge, UK: 1995.
Ng S., Shi H., Hamidi N., Underwood F., Tang W., Benchimol E., Kaplan G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet. 2017;390:2769–2778. doi: 10.1016/S0140-6736(17)32448-0. PubMed DOI
Ndeh D., Gilbert H. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol. Rev. 2018;42:146–164. doi: 10.1093/femsre/fuy002. PubMed DOI
Heeney D., Gareau M., Marco M. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr. Opin. Biotechnol. 2018;49:140–147. doi: 10.1016/j.copbio.2017.08.004. PubMed DOI PMC
Cho H.Y., Yousef A.E., Sastry S.K. Growth kinetics of Lactobacillus acidophilus under ohmic heating. Biotechnol. Bioeng. 1996;49:334–340. doi: 10.1002/(SICI)1097-0290(19960205)49:3<334::AID-BIT12>3.0.CO;2-E. PubMed DOI
Brizuela M., Serrano P., Pérez Y. Studies on Probiotics Properties of Two Lactobacillus Strains. Braz. Arch. Biol. Technol. 2001;44:95–99. doi: 10.1590/S1516-89132001000100013. DOI
Gorbach S.L., Goldin B. Lactobacillus. United States Pat. 1991;32:399.
Kimura H. Production and Physiological Effects of Hydrogen Sulfide. Antioxid. Redox Signal. 2014;20:783–793. doi: 10.1089/ars.2013.5309. PubMed DOI PMC
Rowan F.E., Docherty N.G., Coffey J.C., O’Connell P.R. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br. J. Surg. 2009;96:151–158. doi: 10.1002/bjs.6454. PubMed DOI
Reis M., Almeida J., Lemos P., Carrondo M. Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol. Bioeng. 1992;40:593–600. doi: 10.1002/bit.260400506. PubMed DOI
Blachier F., Beaumont B., Kim E. Cysteine-derived hydrogen sulfide and gut health: A matter of endogenous or bacterial origin. Curr. Opin. Clin. Nutr. Metab. Care. 2019;22:68–75. doi: 10.1097/MCO.0000000000000526. PubMed DOI
Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI
Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC
Kushkevych I., Dordević D., Kollar P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC
Kushkevych I., Vítězová M., Kos J., Kollár P., Jampilek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI
Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol. Lett. 2015;36:106–113. PubMed
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI
Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline- 2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI
Gibson G.R., Macfarlane S., Macfarlane G.T. Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol. 1993;12:117–125. doi: 10.1111/j.1574-6941.1993.tb00023.x. DOI
Loubinoux J., Bronowicji J.P., Pereira I.A. Sulphate-reducing bacteria in human feces and their association with inflammatory diseases. FEMS Microbiol. Ecol. 2002;40:107–112. doi: 10.1111/j.1574-6941.2002.tb00942.x. PubMed DOI
Loubinoux J., Mory F., Pereira I.A., Le Faou A.E. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol. 2000;38:931–934. PubMed PMC
Loubinoux J., Valente F.M.A., Pereira I.A.C. Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int. J. Syst. Evol. Microbiol. 2002;52:1305–1308. PubMed
Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: Relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91. doi: 10.1515/biol-2017-0009. DOI
Kushkevych I., Vítězová M., Vítěz T., Kovac J., Kaucká P., Jesionek W., Bartoš M., Barton L. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. doi: 10.1515/biol-2018-0017. PubMed DOI PMC
Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbiol. 2018;200:945–950. doi: 10.1007/s00203-018-1510-6. PubMed DOI
Pitcher M.C., Cummings J.H. Hydrogen sulphide: A bacterial toxin in ulcerative colitis? Gut. 1996;39:1–4. doi: 10.1136/gut.39.1.1. PubMed DOI PMC
Blachier F., Davila A.M., Mimoun S. Luminal sulfide and large intestine mucosa: Friend or foe? Amino Acids. 2010;39:335–347. doi: 10.1007/s00726-009-0445-2. PubMed DOI
Beauchamp R.O., Bus J.S., Popp J.A., Boreiko C.J., Andjelkovich D.A., Leber P. A critical review of the literature on hydrogen sulfide toxicity. Crc. Crit. Rev. Toxicol. 1984;13:25–97. doi: 10.3109/10408448409029321. PubMed DOI
Grieshaber M.K., Völkel S. Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu. Rev. Physiol. 1998;60:33–53. doi: 10.1146/annurev.physiol.60.1.33. PubMed DOI
Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the Distribution of Hydrogen Producers from the Clostridiales Order in Biogas Reactors Depending on Different Input Substrates. Energies. 2018;11:3270.
Kováč J., Kushkevych I. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria; Proceedings of the International PhD Students Conference MendelNet; Brno, Czech Republic. 6–7 November 2019; pp. 702–707.
Kotrsová V., Kushkevych I. Possible methods for evaluation of hydrogen sulfide toxicity against lactic acid bacteria. Biointerface Res. Appl. Chem. 2019;9:4066–4069.
Tomasova L., Konopelski P., Ufnal M. Gut bacteria and hydrogen sulfide: The new old players in circulatory system homeostasis. Molecules. 2016;21:1558. doi: 10.3390/molecules21111558. PubMed DOI PMC
Tomasova L., Dobrowolski L., Jurkowska H., Wróbel M., Huc T., Ondrias K., Ufnal M. Intracolonic hydrogen sulfide lowers blood pressure in rats. Nitric Oxide. 2016;60:50–58. doi: 10.1016/j.niox.2016.09.007. PubMed DOI
Bronowicka-Adamska P., Wróbel M., Magierowski M., Magierowska K., Kwiecień S., Brzozowski T. Hydrogen sulphide production in healthy and ulcerated gastric mucosa of rats. Molecules. 2017;22:530. doi: 10.3390/molecules22040530. PubMed DOI PMC
NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria
Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats
Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances
The Characterization of Enterococcus Genus: Resistance Mechanisms and Inflammatory Bowel Disease
Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria