Tyramine is one of the most toxic biogenic amines and it is produced commonly by lactic acid bacteria in fermented food products. In present study, we investigated the influence of selected nisin-producing Lactococcus lactis subsp. lactis strains and their cell-free supernatants (CFSs) on tyramine production by four Lactobacillus and two Lactiplantibacillus strains isolated from cheese and beer. Firstly, we examined the antimicrobial effect of the CFSs from twelve Lactococcus strains against tested tyramine producers by agar-well diffusion assay. Six Lactococcus strains whose CFSs showed the highest antimicrobial effect on tyramine producers were further studied. Secondly, we investigated the influence of the selected six Lactococcus strains and their respective CFSs on tyramine production by tested Lactobacillus and Lactiplantibacillus strains in MRS broth supplemented with 2 g.L-1 of l-tyrosine. Tyramine production was monitored by HPLC-UV. The tyramine formation of all tested Lactobacillus and Lactiplantibacillus strains was not detected in the presence of Lc. lactis subsp. lactis CCDM 71 and CCDM 702, and their CFSs. Moreover, the remainder of the investigated Lactococcus strains (CCDM 670, CCDM 686, CCDM 689 and CCDM 731) and their CFSs decreased tyramine production significantly (P < 0.05) - even suppressing it completely in some cases - in four of the six tested tyramine producing strains.
- MeSH
- antibakteriální látky analýza metabolismus farmakologie MeSH
- kultivační média chemie metabolismus farmakologie MeSH
- Lactobacillaceae účinky léků růst a vývoj izolace a purifikace MeSH
- Lactobacillus účinky léků růst a vývoj izolace a purifikace MeSH
- Lactococcus lactis chemie metabolismus MeSH
- pivo mikrobiologie MeSH
- sýr mikrobiologie MeSH
- tyramin analýza metabolismus farmakologie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The composition of the microbiome plays an important role in human health and disease. Whether there is a direct association between the cervicovaginal microbiome and the host's epigenome is largely unexplored. RESULTS: Here we analyzed a total of 448 cervicovaginal smear samples and studied both the DNA methylome of the host and the microbiome using the Illumina EPIC array and next-generation sequencing, respectively. We found that those CpGs that are hypo-methylated in samples with non-lactobacilli (O-type) dominating communities are strongly associated with gastrointestinal differentiation and that a signature consisting of 819 CpGs was able to discriminate lactobacilli-dominating (L-type) from O-type samples with an area under the receiver operator characteristic curve (AUC) of 0.84 (95% CI = 0.77-0.90) in an independent validation set. The performance found in samples with more than 50% epithelial cells was further improved (AUC 0.87) and in women younger than 50 years of age was even higher (AUC 0.91). In a subset of 96 women, the buccal but not the blood cell DNA showed the same trend as the cervicovaginal samples in discriminating women with L- from O-type cervicovaginal communities. CONCLUSIONS: These findings strongly support the view that the epithelial epigenome plays an essential role in hosting specific microbial communities.
- MeSH
- cervix uteri mikrobiologie MeSH
- CpG ostrůvky MeSH
- dospělí MeSH
- epigenom genetika MeSH
- epitelové buňky metabolismus MeSH
- Lactobacillus genetika růst a vývoj MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA MeSH
- mikrobiota genetika MeSH
- prediktivní hodnota testů MeSH
- vagina mikrobiologie MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
Degradation of undesirable biogenic amines (BAs) in foodstuffs by microorganisms is considered one of the most effective ways of eliminating their toxicity. In this study, we designed two sets of primers for the detection and quantification of the multicopper oxidase gene (MCO), which encodes an enzyme involved in BAs degradation, and endogenous (glyceraldehyde-3-phosphate dehydrogenase) gene (GAPDH) in Lactobacillus casei group by real-time PCR (qPCR). We tested 15 Lactobacillus strains in the screening assays (thus, MCO gene possessing assay (PCR) and monitoring of BAs degradation by HPLC-UV), in which Lactobacillus casei CCDM 198 exhibited the best degradation abilities. For this strain, we monitored the expression of the target gene (MCO) in time (qPCR), the effect of redox treatments (cysteine, ascorbic acid) on the expression of the gene, and the ability to degrade BAs not only in a modified MRS medium (MRS/2) but also in a real food sample (milk). Moreover, decarboxylase activity (ability to form BAs) of this strain was excluded. According to the results, CCDM 198 significantly (P < 0.05) reduced BAs (putrescine, histamine, tyramine, cadaverine), up to 25% decline in 48 h. The highest level of relative expression of MCO (5.21 ± 0.14) was achieved in MRS/2 media with cysteine.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- biogenní aminy analýza metabolismus MeSH
- cystein analýza metabolismus MeSH
- glyceraldehyd-3-fosfátdehydrogenasy genetika MeSH
- kultivační média chemie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- kyselina askorbová analýza metabolismus MeSH
- Lactobacillus casei enzymologie genetika růst a vývoj metabolismus MeSH
- Lactobacillus enzymologie genetika růst a vývoj metabolismus MeSH
- mléko chemie MeSH
- oxidoreduktasy genetika metabolismus MeSH
- regulace genové exprese u bakterií MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The gut microbiota is a complex component of humans that depends on diet, host genome, and lifestyle. The background: The study purpose is to find relations between nutrition, intestinal lactic acid bacteria (LAB) from various environments (human, animal intestine, and yogurt) and sulfate-reducing microbial communities in the large intestine; to compare kinetic growth parameters of LAB; and to determine their sensitivity to different concentration of hydrogen sulfide produced by intestinal sulfate-reducing bacteria. METHODS: Microbiological (isolation and identification), biochemical (electrophoresis), molecular biology methods (DNA isolation and PCR analysis), and statistical processing (average and standard error calculations) of the results were used. THE RESULTS: The toxicity of hydrogen sulfide produced by sulfate-reducing bacteria, the survival of lactic acid bacteria, and minimal inhibitory concentrations (MIC) were determined. The measured hydrogen sulfide sensitivity values were the same for L. paracasei and L. reuteri (MIC > 1.1 mM). In addition, L. plantarum and L.fermentum showed also a similar sensitivity (MIC > 0.45 mM) but significantly (p < 0.05) lower than L.reuteri and L. paracasei (1.1 > 0.45 mM). L. paracasei and L. reuteri are more sensitive to hydrogen sulfide than L. fermentum and L. plantarum. L. pentosus was sensitive to the extremely low concentration of H2S (MIC > 0.15 mM). CONCLUSIONS: The Lactobacillus species were significantly sensitive to hydrogen sulfide, which is a final metabolite of intestinal sulfate-reducing bacteria. The results are definitely helpful for a better understanding of complicated interaction among intestinal microbiota and nutrition.
- MeSH
- Bacteria klasifikace izolace a purifikace metabolismus MeSH
- feces mikrobiologie MeSH
- idiopatické střevní záněty mikrobiologie MeSH
- Lactobacillus účinky léků růst a vývoj MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mikrobiální viabilita účinky léků MeSH
- myši MeSH
- střeva mikrobiologie MeSH
- střevní mikroflóra účinky léků MeSH
- sulfan metabolismus farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study investigated the influence of aeration and minimal medium conditions on antioxidant and antibacterial activities of 21 probiotic Lactobacillus strains isolated from dairy products. The probiotic potential of the isolates was evaluated by pH and bile tolerance. Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) was used to confirm the phenotypic identification of isolates. Antioxidant producer isolates were screened by resistance to reactive oxygen species (ROS). The antioxidant and antibacterial activities of extracellular materials after 48 h fermentation with antioxidative strains were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and broth microdilution assays, respectively. The results indicate that the antioxidant capacity of supernatants was increased by using of both minimal medium and agitation. The antibacterial activity was increased in minimal medium, but there has nearly no change in the antibacterial properties by using both agitation and minimal medium. The maximum antibacterial activity was observed during mid-exponential phase until the beginning of the early-stationary phase, but the maximum antioxidant activity was detected at the stationary growth phase. There is a significant relationship between antioxidant and antibacterial activities of the cell-free probiotic extracts, and their production rates are closely related to the fermentation type. The bioactive materials from probiotics could be extracted in a large amount at an appropriate time under a suitable condition.
Several foods on the market, such as yogurt and fermented milk, include mixtures of prebiotics and probiotic microorganisms effective in promoting the proliferation and equilibrium of intestinal bacteria, thus improving gut health. Particularly, researchers and the public have shown increasing interest in the combination of probiotics with natural substances that promote health or that can act as substrates to promote bacterial growth. The aim of this study is to evaluate the effects of different extracts of Aloe barbadensis and Aloe arborescens in fermented milk, taking into account both the prebiotic effect of aloe polysaccharides and the antimicrobial activity of several secondary metabolites. The results demonstrate a beneficial effect of 5% aloe inner gel on Lactobacillus growth and confirm the antimicrobial activity of the phenolic compounds peculiar of green rind extracts.
- MeSH
- Aloe chemie MeSH
- antiinfekční látky farmakologie MeSH
- epidermis rostlin MeSH
- fenoly farmakologie MeSH
- fermentace MeSH
- kyselina mléčná metabolismus MeSH
- Lactobacillus účinky léků růst a vývoj metabolismus MeSH
- lidé MeSH
- listy rostlin MeSH
- mléko mikrobiologie MeSH
- polysacharidy farmakologie MeSH
- prebiotika * MeSH
- probiotika * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Gut microbiota provides a wide range of beneficial function for the host and has an immense effect on the host's health state. It has also been shown that gut microbiome is often involved in the biotransformation of xenobiotics; however, the molecular mechanisms of the interaction between the gut bacteria and the metabolism of drugs by the host are still unclear. To investigate the effect of microbial colonization on messenger RNA (mRNA) expression of liver cytochromes P450 (CYPs), the main drug-metabolizing enzymes, we used germ-free (GF) mice, lacking the intestinal flora and mice monocolonized by non-pathogenic bacteria Lactobacillus plantarum NIZO2877 or probiotic bacteria Escherichia coli Nissle 1917 compared to specific pathogen-free (SPF) mice. Our results show that the mRNA expression of Cyp1a2 and Cyp2e1 was significantly increased, while the expression of Cyp3a11 mRNA was decreased under GF conditions compared to the SPF mice. The both bacteria L. plantarum NIZO2877 and E. coli Nissle 1917 given to the GF mice decreased the level of Cyp1a2 mRNA and normalized it to the control level. On the other hand, the colonization by these bacteria had no effect on the expression of Cyp3a11 mRNA in the liver of the GF mice (which remained decreased). Surprisingly, monocolonization with chosen bacterial strains has shown a different effect on the expression of Cyp2e1 mRNA in GF mice. Increased level of Cyp2e1 expression observed in the GF mice was found also in mice colonized by L. plantarum NIZO2877; however, the colonization with probiotic E. coli Nissle 1917 caused a decrease in Cyp2e1 expression and partially restored the SPF mice conditions.
- MeSH
- Escherichia coli genetika růst a vývoj metabolismus MeSH
- gnotobiologické modely MeSH
- játra enzymologie MeSH
- Lactobacillus genetika růst a vývoj metabolismus MeSH
- messenger RNA genetika metabolismus MeSH
- myši inbrední BALB C MeSH
- myši genetika mikrobiologie MeSH
- střevní mikroflóra * MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši genetika mikrobiologie MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Pfaffia glomerata (Amaranthaceae) is popularly known as "Brazilian ginseng." Previous studies have shown that fructose is the major carbohydrate component present in its roots. Inulin-type fructans, polymers of fructose, are the most widespread and researched prebiotics. Here, we isolated and chemically characterized inulin extracted from P. glomerata roots and investigated its potential prebiotic effect. Fructans were isolated and their structures were determined using colorimetric, chromatography, polarimetry, and spectroscopic analysis. The degree of polymerization (DP) was determined, and an in vitro prebiotic test was performed. The structure of inulin was confirmed by chromatography and spectroscopic analysis and through comparison with existing data. Representatives from the genera Lactobacillus and Bifidobacterium utilized inulin from P. glomerata, because growth was significantly stimulated, while this ability is strain specific. The results indicated that inulin extracted from P. glomerata roots represents a promising new source of inulin-type prebiotics.
- MeSH
- Amaranthaceae chemie MeSH
- chemická precipitace MeSH
- inulin chemie izolace a purifikace farmakologie MeSH
- kořeny rostlin chemie MeSH
- Lactobacillus účinky léků růst a vývoj MeSH
- polymerizace MeSH
- prebiotika MeSH
- rostlinné extrakty chemie izolace a purifikace farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The polysaccharide inulin has great importance in the food and pharmaceutical industries. The degree of polymerization (DP) of inulin influences important properties, such as, solubility, thermal stability, sweetness power and prebiotic activity. Molecules with a high degree of polymerization are obtained through physical techniques for enrichment of the inulin chains because they are not commonly obtained from plants extract. Gas chromatography/Mass Spectrometry and (1)H Nuclear Magnetic Resonance analysis showed that inulin from Stevia rebaudiana roots has a degree of polymerization (DPn 28) higher than the value of DPn 12-15 for inulins from other plant species. Furthermore, the methodology of freeze/thaw to enrich the chains allowed us to increase the DP, similarly to other methodologies used for the enrichment of inulin chains. The prebiotic assays confirm that inulin from S. rebaudiana has a high DP. The combined use of these molecules with low degree of polymerization fructans seems to be advantageous to prolong the prebiotic effect in the colon. Our results suggest that S. rebaudiana roots are a promising source of high degree polymerization inulins.
- MeSH
- bakteriální vaginóza * farmakoterapie komplikace mikrobiologie MeSH
- barvení a značení metody MeSH
- barvicí látky MeSH
- dospělí MeSH
- incidence MeSH
- klindamycin aplikace a dávkování škodlivé účinky MeSH
- komplikace těhotenství mikrobiologie MeSH
- Lactobacillus fyziologie růst a vývoj MeSH
- lidé MeSH
- metronidazol aplikace a dávkování MeSH
- probiotika terapeutické užití MeSH
- rizikové faktory MeSH
- těhotenství MeSH
- vaginální stěr MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH