Quantitative super-resolution microscopy reveals the differences in the nanoscale distribution of nuclear phosphatidylinositol 4,5-bisphosphate in human healthy skin and skin warts
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37484912
PubMed Central
PMC10361526
DOI
10.3389/fcell.2023.1217637
PII: 1217637
Knihovny.cz E-zdroje
- Klíčová slova
- STED nanoscopy, cell nucleus, formalin-fixed paraffin-embedded tissue sections, human papillomavirus (HPV), nuclear architecture, nuclear speckles, phosphatidylinositol 4,5-bisphosphate, quantitative image analysis,
- Publikační typ
- časopisecké články MeSH
Introduction: Imaging of human clinical formalin-fixed paraffin-embedded (FFPE) tissue sections provides insights into healthy and diseased states and therefore represents a valuable resource for basic research, as well as for diagnostic and clinical purposes. However, conventional light microscopy does not allow to observe the molecular details of tissue and cell architecture due to the diffraction limit of light. Super-resolution microscopy overcomes this limitation and provides access to the nanoscale details of tissue and cell organization. Methods: Here, we used quantitative multicolor stimulated emission depletion (STED) nanoscopy to study the nanoscale distribution of the nuclear phosphatidylinositol 4,5-bisphosphate (nPI(4,5)P2) with respect to the nuclear speckles (NS) marker SON. Results: Increased nPI(4,5)P2 signals were previously linked to human papillomavirus (HPV)-mediated carcinogenesis, while NS-associated PI(4,5)P2 represents the largest pool of nPI(4,5)P2 visualized by staining and microscopy. The implementation of multicolor STED nanoscopy in human clinical FFPE skin and wart sections allowed us to provide here the quantitative evidence for higher levels of NS-associated PI(4,5)P2 in HPV-induced warts compared to control skin. Discussion: These data expand the previous reports of HPV-induced increase of nPI(4,5)P2 levels and reveal for the first time the functional, tissue-specific localization of nPI(4,5)P2 within NS in clinically relevant samples. Moreover, our approach is widely applicable to other human clinical FFPE tissues as an informative addition to the classical histochemistry.
Institute of Pathology Medical Faculty and University Hospital Cologne Cologne Germany
Microscopy Centre Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Abbe E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. für Mikrosk. Anat. 9, 413–468. 10.1007/bf02956173 DOI
Alexander K. A., Cote A., Nguyen S. C., Zhang L., Gholamalamdari O., Agudelo-Garcia P., et al. (2021). p53 mediates target gene association with nuclear speckles for amplified RNA expression. Mol. Cell 81, 1666–1681.e6. 10.1016/j.molcel.2021.03.006 PubMed DOI PMC
Baker M. (2012). Biorepositories: Building better biobanks. Nature 486, 141–146. 10.1038/486141a PubMed DOI
Balaban C., Sztacho M., Antiga L., Miladinovic A., Harata M., Hozak P. (2023). PIP2-Effector protein MPRIP regulates RNA polymerase II condensation and transcription. Biomolecules 13, 426. 10.3390/biom13030426 PubMed DOI PMC
Balaban C., Sztacho M., Blazikova M., Hozak P. (2021). The F-Actin-Binding MPRIP forms phase-separated condensates and associates with PI(4,5)P2 and active RNA polymerase II in the cell nucleus. Cells 10, 848. 10.3390/cells10040848 PubMed DOI PMC
Balla T. (2013). Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 93, 1019–1137. 10.1152/physrev.00028.2012 PubMed DOI PMC
Berchtold D., Battich N., Pelkmans L. (2018). A systems-level study reveals regulators of membrane-less organelles in human cells. Mol. Cell 72, 1035–1049.e5. 10.1016/j.molcel.2018.10.036 PubMed DOI
Berning S., Willig K. I., Steffens H., Dibaj P., Hell S. W. (2012). Nanoscopy in a living mouse brain. Science 335, 551. 10.1126/science.1215369 PubMed DOI
Bolte S., Cordelieres F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232. 10.1111/j.1365-2818.2006.01706.x PubMed DOI
Boronenkov I. V., Loijens J. C., Umeda M., Anderson R. A. (1998). Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell 9, 3547–3560. 10.1091/mbc.9.12.3547 PubMed DOI PMC
Brown J. M., Green J., das Neves R. P., Wallace H. A., Smith A. J., Hughes J., et al. (2008). Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J. Cell Biol. 182, 1083–1097. 10.1083/jcb.200803174 PubMed DOI PMC
Bunce M. W., Bergendahl K., Anderson R. A. (2006). Nuclear PI(4,5)P(2): A new place for an old signal. Biochim. Biophys. Acta 1761, 560–569. 10.1016/j.bbalip.2006.03.002 PubMed DOI
Castano E., Yildirim S., Faberova V., Krausova A., Ulicna L., Paprckova D., et al. (2019). Nuclear phosphoinositides-versatile regulators of genome functions. Cells 8, 649. 10.3390/cells8070649 PubMed DOI PMC
Chen Y., Belmont A. S. (2019). Genome organization around nuclear speckles. Curr. Opin. Genet. Dev. 55, 91–99. 10.1016/j.gde.2019.06.008 PubMed DOI PMC
Chen Y., Zhang Y., Wang Y., Zhang L., Brinkman E. K., Adam S. A., et al. (2018). Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J. Cell Biol. 217, 4025–4048. 10.1083/jcb.201807108 PubMed DOI PMC
Cocco L., Gilmour R. S., Ognibene A., Letcher A. J., Manzoli F. A., Irvine R. F. (1987). Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem. J. 248, 765–770. 10.1042/bj2480765 PubMed DOI PMC
Codron P., Letournel F., Marty S., Renaud L., Bodin A., Duchesne M., et al. (2021). STochastic Optical Reconstruction Microscopy (STORM) reveals the nanoscale organization of pathological aggregates in human brain. Neuropathol. Appl. Neurobiol. 47, 127–142. 10.1111/nan.12646 PubMed DOI PMC
Creech M. K., Wang J., Nan X., Gibbs S. L. (2017). Superresolution imaging of clinical formalin fixed paraffin embedded breast cancer with single molecule localization microscopy. Sci. Rep. 7, 40766. 10.1038/srep40766 PubMed DOI PMC
Dani A., Huang B., Bergan J., Dulac C., Zhuang X. (2010). Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856. 10.1016/j.neuron.2010.11.021 PubMed DOI PMC
Divecha N., Banfic H., Irvine R. F. (1991). The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J. 10, 3207–3214. 10.1002/j.1460-2075.1991.tb04883.x PubMed DOI PMC
Dunn K. W., Kamocka M. M., McDonald J. H. (2011). A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300, C723–C742. 10.1152/ajpcell.00462.2010 PubMed DOI PMC
Eiseman E., Haga S. B. (1999). Handbook of human tissue sources. Washington, D.C: RAND.
Fiume R., Keune W. J., Faenza I., Bultsma Y., Ramazzotti G., Jones D. R., et al. (2012). Nuclear phosphoinositides: Location, regulation and function. Subcell. Biochem. 59, 335–361. 10.1007/978-94-007-3015-1_11 PubMed DOI
George-Tellez R., Segura-Valdez M. L., Gonzalez-Santos L., Jimenez-Garcia L. F. (2002). Cellular organization of pre-mRNA splicing factors in several tissues. Changes in the uterus by hormone action. Biol. Cell 94, 99–108. 10.1016/s0248-4900(02)01186-3 PubMed DOI
Hall L. L., Smith K. P., Byron M., Lawrence J. B. (2006). Molecular anatomy of a speckle. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 288, 664–675. 10.1002/ar.a.20336 PubMed DOI PMC
Hammond G., Thomas C. L., Schiavo G. (2004). Nuclear phosphoinositides and their functions. Curr. Top. Microbiol. Immunol. 282, 177–206. 10.1007/978-3-642-18805-3_7 PubMed DOI
Heilemann M., van de Linde S., Schuttpelz M., Kasper R., Seefeldt B., Mukherjee A., et al. (2008). Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 6172–6176. 10.1002/anie.200802376 PubMed DOI
Hell S. W., Wichmann J. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782. 10.1364/ol.19.000780 PubMed DOI
Hernandez I. C., Mohan S., Minderler S., Jowett N. (2022). Super-resolved fluorescence imaging of peripheral nerve. Sci. Rep. 12, 12450. 10.1038/s41598-022-16769-0 PubMed DOI PMC
Hewitt R. E. (2011). Biobanking: The foundation of personalized medicine. Curr. Opin. Oncol. 23, 112–119. 10.1097/CCO.0b013e32834161b8 PubMed DOI
Hoboth P., Sebesta O., Hozak P. (2021a). How single-molecule localization microscopy expanded our mechanistic understanding of RNA polymerase II transcription. Int. J. Mol. Sci. 22, 6694. 10.3390/ijms22136694 PubMed DOI PMC
Hoboth P., Sebesta O., Sztacho M., Castano E., Hozak P. (2021b). Dual-color dSTORM imaging and ThunderSTORM image reconstruction and analysis to study the spatial organization of the nuclear phosphatidylinositol phosphates. MethodsX 8, 101372. 10.1016/j.mex.2021.101372 PubMed DOI PMC
Hoboth P., Sztacho M., Sebesta O., Schatz M., Castano E., Hozak P. (2021c). Nanoscale mapping of nuclear phosphatidylinositol phosphate landscape by dual-color dSTORM. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866, 158890. 10.1016/j.bbalip.2021.158890 PubMed DOI
Howley P. M., Pfister H. J. (2015). Beta genus papillomaviruses and skin cancer. Virology 479-480, 290–296. 10.1016/j.virol.2015.02.004 PubMed DOI PMC
Hufbauer M., Akgül B. (2017). Molecular mechanisms of human papillomavirus induced skin carcinogenesis. Viruses 9, 187. 10.3390/v9070187 PubMed DOI PMC
Ilgen P., Stoldt S., Conradi L. C., Wurm C. A., Ruschoff J., Ghadimi B. M., et al. (2014). STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue. PLoS One 9, e101563. 10.1371/journal.pone.0101563 PubMed DOI PMC
Ilik I. A., Aktas T. (2021). Nuclear speckles: Dynamic hubs of gene expression regulation. FEBS J. 289, 7234–7245. 10.1111/febs.16117 PubMed DOI
Ilik I. A., Malszycki M., Lubke A. K., Schade C., Meierhofer D., Aktas T. (2020). SON and SRRM2 are essential for nuclear speckle formation. Elife 9, e60579. 10.7554/eLife.60579 PubMed DOI PMC
Jacobsen R. G., Mazloumi Gavgani F., Edson A. J., Goris M., Altankhuyag A., Lewis A. E. (2019). Polyphosphoinositides in the nucleus: Roadmap of their effectors and mechanisms of interaction. Adv. Biol. Regul. 72, 7–21. 10.1016/j.jbior.2019.04.001 PubMed DOI
Kalasova I., Faberova V., Kalendova A., Yildirim S., Ulicna L., Venit T., et al. (2016). Tools for visualization of phosphoinositides in the cell nucleus. Histochem Cell Biol. 145, 485–496. 10.1007/s00418-016-1409-8 PubMed DOI
Kim J., Venkata N. C., Hernandez Gonzalez G. A., Khanna N., Belmont A. S. (2020). Gene expression amplification by nuclear speckle association. J. Cell Biol. 219, e201904046. 10.1083/jcb.201904046 PubMed DOI PMC
Klar T. A., Jakobs S., Dyba M., Egner A., Hell S. W. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. U. S. A. 97, 8206–8210. 10.1073/pnas.97.15.8206 PubMed DOI PMC
Kokkat T. J., Patel M. S., McGarvey D., LiVolsi V. A., Baloch Z. W. (2013). Archived formalin-fixed paraffin-embedded (FFPE) blocks: A valuable underexploited resource for extraction of dna, rna, and protein. Biopreserv Biobank 11, 101–106. 10.1089/bio.2012.0052 PubMed DOI PMC
Kuga T., Kume H., Adachi J., Kawasaki N., Shimizu M., Hoshino I., et al. (2016). Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON. Sci. Rep. 6, 34472. 10.1038/srep34472 PubMed DOI PMC
Lamond A. I., Spector D. L. (2003). Nuclear speckles: A model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4, 605–612. 10.1038/nrm1172 PubMed DOI
Lelek M., Gyparaki M. T., Beliu G., Schueder F., Griffie J., Manley S., et al. (2021). Single-molecule localization microscopy. Nat. Rev. Methods Prim. 1, 39. 10.1038/s43586-021-00038-x PubMed DOI PMC
Lewis A. E., Sommer L., Arntzen M. O., Strahm Y., Morrice N. A., Divecha N., et al. (2011). Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol. Cell. proteomics MCP 10, M110.003376, M110.003376. 10.1074/mcp.M110.003376 PubMed DOI PMC
Liu Z., Lavis L. D., Betzig E. (2015). Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659. 10.1016/j.molcel.2015.02.033 PubMed DOI
Loo S. K., Tang W. Y. (2014). Warts (non-genital). BMJ Clin. Evid 2014, 1710. PubMed PMC
Lou J. J., Mirsadraei L., Sanchez D. E., Wilson R. W., Shabihkhani M., Lucey G. M., et al. (2014). A review of room temperature storage of biospecimen tissue and nucleic acids for anatomic pathology laboratories and biorepositories. Clin. Biochem. 47, 267–273. 10.1016/j.clinbiochem.2013.12.011 PubMed DOI PMC
Marx B., Hufbauer M., Zigrino P., Majewski S., Markiefka B., Sachsenheimer T., et al. (2018). Phospholipidation of nuclear proteins by the human papillomavirus E6 oncoprotein: Implication in carcinogenesis. Oncotarget 9, 34142–34158. 10.18632/oncotarget.26140 PubMed DOI PMC
Mazzotti G., Zini N., Rizzi E., Rizzoli R., Galanzi A., Ognibene A., et al. (1995). Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J. Histochem Cytochem 43, 181–191. 10.1177/43.2.7822774 PubMed DOI
McBride A. A. (2022). Human papillomaviruses: Diversity, infection and host interactions. Nat. Rev. Microbiol. 20, 95–108. 10.1038/s41579-021-00617-5 PubMed DOI
Mellman D. L., Anderson R. A. (2009). A novel gene expression pathway regulated by nuclear phosphoinositides. Adv. Enzyme Regul. 49, 11–28. 10.1016/j.advenzreg.2009.01.007 PubMed DOI PMC
Mellman D. L., Gonzales M. L., Song C., Barlow C. A., Wang P., Kendziorski C., et al. (2008). A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 451, 1013–1017. 10.1038/nature06666 PubMed DOI
Menon G. K., Cleary G. W., Lane M. E. (2012). The structure and function of the stratum corneum. Int. J. Pharm. 435, 3–9. 10.1016/j.ijpharm.2012.06.005 PubMed DOI
Mintz P. J., Patterson S. D., Neuwald A. F., Spahr C. S., Spector D. L. (1999). Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 18, 4308–4320. 10.1093/emboj/18.15.4308 PubMed DOI PMC
Nagerl U. V., Willig K. I., Hein B., Hell S. W., Bonhoeffer T. (2008). Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. U. S. A. 105, 18982–18987. 10.1073/pnas.0810028105 PubMed DOI PMC
Noordstra I., van den Berg C. M., Boot F. W. J., Katrukha E. A., Yu K. L., Tas R. P., et al. (2022). Organization and dynamics of the cortical complexes controlling insulin secretion in beta-cells. J. Cell Sci. 135, jcs259430. 10.1242/jcs.259430 PubMed DOI PMC
Osborne S. L., Thomas C. L., Gschmeissner S., Schiavo G. (2001). Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 114, 2501–2511. 10.1242/jcs.114.13.2501 PubMed DOI
Peddie C. J., Collinson L. M. (2014). Exploring the third dimension: Volume electron microscopy comes of age. Micron 61, 9–19. 10.1016/j.micron.2014.01.009 PubMed DOI
Pinali C., Kitmitto A. (2014). Serial block face scanning electron microscopy for the study of cardiac muscle ultrastructure at nanoscale resolutions. J. Mol. Cell Cardiol. 76, 1–11. 10.1016/j.yjmcc.2014.08.010 PubMed DOI
Prasanth K. V., Sacco-Bubulya P. A., Prasanth S. G., Spector D. L. (2003). Sequential entry of components of the gene expression machinery into daughter nuclei. Mol. Biol. Cell 14, 1043–1057. 10.1091/mbc.e02-10-0669 PubMed DOI PMC
Rattay S., Hufbauer M., Hoboth P., Sztacho M., Akgül B. (2023). Viruses and phospholipids: friends and foes during infection. J. Med. Virol. 95 (3), e28658. 10.1002/jmv.28658 PubMed DOI
Rayleigh R. S. (1896). XV. On the theory of optical images, with special reference to the microscope. Lond. Edinb. Dublin Philosophical Mag. J. Sci. 42, 167–195. 10.1080/14786449608620902 DOI
Rueden C. T., Schindelin J., Hiner M. C., DeZonia B. E., Walter A. E., Arena E. T., et al. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinforma. 18, 529. 10.1186/s12859-017-1934-z PubMed DOI PMC
Saitoh N., Sakamoto C., Hagiwara M., Agredano-Moreno L. T., Jimenez-Garcia L. F., Nakao M. (2012). The distribution of phosphorylated SR proteins and alternative splicing are regulated by RANBP2. Mol. Biol. Cell 23, 1115–1128. 10.1091/mbc.E11-09-0783 PubMed DOI PMC
Saitoh N., Spahr C. S., Patterson S. D., Bubulya P., Neuwald A. F., Spector D. L. (2004). Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell 15, 3876–3890. 10.1091/mbc.e04-03-0253 PubMed DOI PMC
Schermelleh L., Ferrand A., Huser T., Eggeling C., Sauer M., Biehlmaier O., et al. (2019). Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84. 10.1038/s41556-018-0251-8 PubMed DOI
Schermelleh L., Heintzmann R., Leonhardt H. (2010). A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175. 10.1083/jcb.201002018 PubMed DOI PMC
Shah Z. H., Jones D. R., Sommer L., Foulger R., Bultsma Y., D'Santos C., et al. (2013). Nuclear phosphoinositides and their impact on nuclear functions. FEBS J. 280, 6295–6310. 10.1111/febs.12543 PubMed DOI
Sibarita J. B. (2005). Deconvolution microscopy. Adv. Biochem. Eng. Biotechnol. 95, 201–243. 10.1007/b102215 PubMed DOI
Sjovall P., Gregoire S., Wargniez W., Skedung L., Luengo G. S. (2022). 3D molecular imaging of stratum corneum by mass spectrometry suggests distinct distribution of cholesteryl esters compared to other skin lipids. Int. J. Mol. Sci. 23, 13799. 10.3390/ijms232213799 PubMed DOI PMC
Sobol M., Krausova A., Yildirim S., Kalasova I., Faberova V., Vrkoslav V., et al. (2018). Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell Sci. 131, jcs211094. 10.1242/jcs.211094 PubMed DOI
Sobol M., Yildirim S., Philimonenko V. V., Marasek P., Castano E., Hozak P. (2013). UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus 4, 478–486. 10.4161/nucl.27154 PubMed DOI PMC
Spector D. L., Lamond A. I. (2011). Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646. 10.1101/cshperspect.a000646 PubMed DOI PMC
Sztacho M., Salovska B., Cervenka J., Balaban C., Hoboth P., Hozak P. (2021). Limited proteolysis-coupled mass spectrometry identifies phosphatidylinositol 4,5-bisphosphate effectors in human nuclear proteome. Cells 10, 68. 10.3390/cells10010068 PubMed DOI PMC
Sztacho M., Sobol M., Balaban C., Escudeiro Lopes S. E., Hozak P. (2019). Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv. Biol. Regul. 71, 111–117. 10.1016/j.jbior.2018.09.009 PubMed DOI
Tam J., Merino D. (2015). Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. J. Neurochem. 135, 643–658. 10.1111/jnc.13257 PubMed DOI
Thiry M. (1993). Differential location of nucleic acids within interchromatin granule clusters. Eur. J. Cell Biol. 62, 259–269. PubMed
Thomas C. L., Steel J., Prestwich G. D., Schiavo G. (1999). Generation of phosphatidylinositol-specific antibodies and their characterization. Biochem. Soc. Trans. 27, 648–652. 10.1042/bst0270648 PubMed DOI
Turkowyd B., Virant D., Endesfelder U. (2016). From single molecules to life: Microscopy at the nanoscale. Anal. Bioanal. Chem. 408, 6885–6911. 10.1007/s00216-016-9781-8 PubMed DOI PMC
van de Linde S., Loschberger A., Klein T., Heidbreder M., Wolter S., Heilemann M., et al. (2011). Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009. 10.1038/nprot.2011.336 PubMed DOI
van Smeden J., Boiten W. A., Hankemeier T., Rissmann R., Bouwstra J. A., Vreeken R. J. (2014a). Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim. Biophys. Acta 1841, 70–79. 10.1016/j.bbalip.2013.10.002 PubMed DOI
van Smeden J., Janssens M., Gooris G. S., Bouwstra J. A. (2014b). The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta 1841, 295–313. 10.1016/j.bbalip.2013.11.006 PubMed DOI
Wallace W., Schaefer L. H., Swedlow J. R. (2001). A workingperson's guide to deconvolution in light microscopy. Biotechniques. 31:1076–1078. 10.2144/01315bi01 PubMed DOI
Wilhelm B. G., Mandad S., Truckenbrodt S., Krohnert K., Schafer C., Rammner B., et al. (2014). Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344, 1023–1028. 10.1126/science.1252884 PubMed DOI
Willig K. I., Rizzoli S. O., Westphal V., Jahn R., Hell S. W. (2006). STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939. 10.1038/nature04592 PubMed DOI
Yildirim S., Castano E., Sobol M., Philimonenko V. V., Dzijak R., Venit T., et al. (2013). Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J. Cell Sci. 126, 2730–2739. 10.1242/jcs.123661 PubMed DOI
York J. D., Odom A. R., Murphy R., Ives E. B., Wente S. R. (1999). A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285, 96–100. 10.1126/science.285.5424.96 PubMed DOI
Zhao K., Wang W., Rando O. J., Xue Y., Swiderek K., Kuo A., et al. (1998). Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636. 10.1016/s0092-8674(00)81633-5 PubMed DOI
Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer