Functionally distinct regions of the locus Leishmania major response 15 control IgE or IFNγ level in addition to skin lesions
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37600780
PubMed Central
PMC10437074
DOI
10.3389/fimmu.2023.1145269
Knihovny.cz E-resources
- Keywords
- Leishmania major, advanced intercross line, bioinformatics analysis, fine mapping, functional heterogeneity, quantitative trait locus, recombinant mapping, susceptibility to infection,
- MeSH
- Cytokines MeSH
- Immunoglobulin E MeSH
- Interferon-gamma genetics MeSH
- Skin Diseases * MeSH
- Leishmania major * genetics MeSH
- Mice MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytokines MeSH
- Immunoglobulin E MeSH
- Interferon-gamma MeSH
Leishmaniasis, a disease caused by parasites of Leishmania spp., endangers more than 1 billion people living in endemic countries and has three clinical forms: cutaneous, mucocutaneous, and visceral. Understanding of individual differences in susceptibility to infection and heterogeneity of its pathology is largely lacking. Different mouse strains show a broad and heterogeneous range of disease manifestations such as skin lesions, splenomegaly, hepatomegaly, and increased serum levels of immunoglobulin E and several cytokines. Genome-wide mapping of these strain differences detected more than 30 quantitative trait loci (QTLs) that control the response to Leishmania major. Some control different combinations of disease manifestations, but the nature of this heterogeneity is not yet clear. In this study, we analyzed the L. major response locus Lmr15 originally mapped in the strain CcS-9 which carries 12.5% of the genome of the resistant strain STS on the genetic background of the susceptible strain BALB/c. For this analysis, we used the advanced intercross line K3FV between the strains BALB/c and STS. We confirmed the previously detected loci Lmr15, Lmr18, Lmr24, and Lmr27 and performed genetic dissection of the effects of Lmr15 on chromosome 11. We prepared the interval-specific recombinant strains 6232HS1 and 6229FUD, carrying two STS-derived segments comprising the peak linkage of Lmr15 whose lengths were 6.32 and 17.4 Mbp, respectively, and analyzed their response to L. major infection. These experiments revealed at least two linked but functionally distinct chromosomal regions controlling IFNγ response and IgE response, respectively, in addition to the control of skin lesions. Bioinformatics and expression analysis identified the potential candidate gene Top3a. This finding further clarifies the genetic organization of factors relevant to understanding the differences in the individual risk of disease.
Department of Medical Genetics 3rd Faculty of Medicine Charles University Prague Czechia
Department of Parasitology Faculty of Science Charles University Prague Czechia
See more in PubMed
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. . Leishmaniasis worldwide and global estimates of its incidence. PloS One (2012) 7(5):e35671. doi: 10.1371/journal.pone.0035671 PubMed DOI PMC
Gradoni L. A brief introduction to leishmaniasis epidemiology. In: The leishmaniases: old neglected tropical diseases. Springer; (2018). p. 1–13.
World Health Organization . Leishmaniasis. Available at: https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis (Accessed April 22, 2022).
Kobets T, Grekov I, Lipoldova M. Leishmaniasis: prevention, parasite detection and treatment. Curr Med Chem (2012) 19(10):1443–74. doi: 10.2174/092986712799828300 PubMed DOI
Kaye PM, Mohan S, Mantel C, Malhame M, Revill P, Le Rutte E, et al. . Overcoming roadblocks in the development of vaccines for leishmaniasis. Expert Rev Vaccines (2021) 20(11):1419–30. doi: 10.1080/14760584.2021.1990043 PubMed DOI PMC
Bogdan C, Donhauser N, Döring R, Röllinghoff M, Diefenbach A, Rittig MG. Fibroblasts as host cells in latent leishmaniosis. J Exp Med (2000) 191(12):2121–30. doi: 10.1084/jem.191.12.2121 PubMed DOI PMC
Schwing A, Pisani DF, Pomares C, Majoor A, Lacas-Gervais S, Jager J, et al. . Identification of adipocytes as target cells for Leishmania infantum parasites. Sci Rep (2021) 11(1):21275. doi: 10.1038/s41598-021-00443-y PubMed DOI PMC
Lipoldová M, Demant P. Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet (2006) 7:294–305. doi: 10.1038/nrg1832 PubMed DOI
Sakthianandeswaren A, Foote SJ, Handman E. The role of host genetics in leishmaniasis. Trends Parasitol (2009) 25(8):383–91. doi: 10.1016/j.pt.2009.05.004 PubMed DOI
Oryan A, Akbari M. Worldwide risk factors in leishmaniasis. Asian Pac J Trop Med (2016) 9(10):925–32. doi: 10.1016/j.apjtm.2016.06.021 PubMed DOI
Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet (2018) 392(10151):951–70. doi: 10.1016/S0140-6736(18)31204-2 PubMed DOI
Lipoldová M, Demant P. Gene-specific sex effects on susceptibility to infectious diseases. Front Immunol (2021) 12:712688. doi: 10.3389/fimmu.2021.712688 PubMed DOI PMC
Krayem I, Lipoldová M. Role of host genetics and cytokines in Leishmania infection. Cytokine (2021) 147:155244. doi: 10.1016/j.cyto.2020.155244 PubMed DOI
Lipoldová M, Svobodová M, Havelková H, Krulová M, Badalová J, Nohýnková E, et al. . Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics (2002) 54(3):174–83. doi: 10.1007/s00251-002-0439-7 PubMed DOI
Babay BE, Louzir H, Kebaïer C, Boubaker S, Dellagi K, Cazenave PA. Inbred strains derived from feral mice reveal new pathogenic mechanisms of experimental leishmaniasis due to Leishmania major . Infect Immun (2004) 72(8):4603–11. doi: 10.1128/IAI.72.8.4603-4611.2004 PubMed DOI PMC
Kobets T, Havelková H, Grekov I, Volkova V, Vojtíšková J, Slapničková M, et al. . Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver. PloS Negl Trop Dis (2012) 6(6):e1667. doi: 10.1371/journal.pntd.0001667 PubMed DOI PMC
Slapničková M, Volkova V, Čepičková M, Kobets T, Šíma M, Svobodová M, et al. . Gene-specific sex effects on eosinophil infiltration in leishmaniasis. Biol Sex Differ (2016) 7:59. doi: 10.1186/s13293-016-0117-3 PubMed DOI PMC
Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol (2002) 2(11):845–58. doi: 10.1038/nri933 PubMed DOI
Rostamian M, Niknam HM. (2019) Leishmania tropica: what we know from its experimental models. Adv Parasitol 104:1–38. doi: 10.1016/bs.apar.2018.11.001 PubMed DOI
Harrington V, Gurung P. Reconciling protective and pathogenic roles of the NLRP3 inflammasome in leishmaniasis. Immunol Rev (2020) 297(1):53–66. doi: 10.1111/imr.12886 PubMed DOI PMC
Volpedo G, Pacheco-Fernandez T, Bhattacharya P, Oljuskin T, Dey R, Gannavaram S, et al. . Determinants of innate immunity in visceral leishmaniasis and their implication in vaccine development. Front Immunol (2021) 12:748325. doi: 10.3389/fimmu.2021.748325 PubMed DOI PMC
Lipoldová M, Sohrabi Y. Role of interferon-induced GTPases in leishmaniasis. PloS Negl Trop Dis (2022) 16(1):e0010093. doi: 10.1371/journal.pntd.0010093 PubMed DOI PMC
Beebe AM, Mauze S, Schork NJ, Coffman RL. Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice. Immunity (1997) 6(5):551–7. doi: 10.1016/s1074-7613(00)80343-x PubMed DOI
Roberts LJ, Baldwin TM, Curtis JM, Handman E, Foote SJ. Resistance to Leishmania major is linked to the H2 region on chromosome 17 and to chromosome 9. J Exp Med (1997) 185(9):1705–10. doi: 10.1084/jem.185.9.1705 PubMed DOI PMC
Lipoldová M, Svobodová M, Krulová M, Havelková H, Badalová J, Nohýnková E, et al. . Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun (2000) 1(3):200–6. doi: 10.1038/sj.gene.6363660 PubMed DOI
Havelková H, Badalová J, Svobodová M, Vojtísková J, Kurey I, Vladimirov V, et al. . Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun (2006) 7(3):220–33. doi: 10.1038/sj.gene.6364290 PubMed DOI
Kosarová M, Havelková H, Krulová M, Demant P, Lipoldová M. The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by locus Cypr1 and by loci Cypr2 and Cypr3, respectively. Immunogenetics (1999) 49(2):134–41. doi: 10.1007/s002510050472 PubMed DOI
Sakthianandeswaren A, Curtis JM, Elso C, Kumar B, Baldwin TM, Lopaticki S, et al. . Fine mapping of Leishmania major susceptibility locus lmr2 and evidence of a role for Fli1 in disease and wound healing. Infect Immun (2010) 78(6):2734–44. doi: 10.1128/IAI.00126-10 PubMed DOI PMC
Kobets T, Čepičková M, Volkova V, Sohrabi Y, Havelková H, Svobodová M, et al. . Novel loci controlling parasite load in organs of mice infected with Leishmania major, their interactions and sex influence. Front Immunol (2019) 10:1083. doi: 10.3389/fimmu.2019.01083 PubMed DOI PMC
Available at: http://www.informatics.jax.org/inbred_strains/mouse/docs/STS.shtml (Accessed April 23, 2023).
Demant P, Lipoldova M, Svobodova M. Resistance to Leishmania major in mice. Science (1996) 274(5291):1392a. doi: 10.1126/science.274.5291.1392a PubMed DOI
Palus M, Vojtíšková J, Salát J, Kopecký J, Grubhoffer L, Lipoldová M, et al. . Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflamm (2013) 10:77. doi: 10.1186/1742-2094-10-77 PubMed DOI PMC
van der Gugten AA, Röpcke G, van Nie R, Hilgers J. Mouse strain (STS/A) resistant to mammary tumor induction by hypophysial isografts. Cancer Res (1985) 45(8):3448–53. PubMed
Moen CJ, van der Valk MA, Snoek M, van Zutphen BF, von Deimling O, Hart AA, et al. . The recombinant congenic strains–a novel genetic tool applied to the study of colon tumor development in the mouse. Mamm Genome (1991) 1(4):217–27. doi: 10.1007/BF00352328 PubMed DOI
Mori N, Okumoto M, van der Valk MA, Imai S, Haga S, Esaki K, et al. . Genetic dissection of susceptibility to radiation-induced apoptosis of thymocytes and mapping of Rapop1, a novel susceptibility gene. Genomics (1995) 25(3):609–14. doi: 10.1016/0888-7543(95)80001-3 PubMed DOI
Mori N, van Wezel T, van der Valk M, Yamate J, Sakuma S, Okumoto M, et al. . Genetics of susceptibility to radiation-induced apoptosis in colon: two loci on chromosomes 9 and 16. Mamm Genome (1998) 9(5):377–80. doi: 10.1007/s003359900773 PubMed DOI
Lipoldová M, Kosarová M, Zajícová A, Holán V, Hart AA, Krulová M, et al. . Separation of multiple genes controlling the T-cell proliferative response to IL-2 and anti-CD3 using recombinant congenic strains. Immunogenetics (1995) 41(5):301–11. doi: 10.1007/BF00172155 PubMed DOI
Holán V, Lipoldová M, Demant P. Identical genetic control of MLC reactivity to different MHC incompatibilities, independent of production of and response to IL-2. Immunogenetics (1996) 44(1):27–35. doi: 10.1007/BF02602654 PubMed DOI
Markel P, Shu P, Ebeling C, Carlson GA, Nagle DL, Smutko JS, et al. . Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet (1997) 17(3):280–4. doi: 10.1038/ng1197-280 PubMed DOI
Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A. Simplified mammalian DNA isolation procedure. Nucleic Acids Res (1991) 19:4293. doi: 10.1093/nar/19.15.4293 PubMed DOI PMC
Šíma M, Havelková H, Quan L, Svobodová M, Jarošíková T, Vojtíšková J, et al. . Genetic control of resistance to Trypanosoma brucei brucei infection in mice. PloS Negl Trop Dis (2011) 5(6):e1173. doi: 10.1371/journal.pntd.0001173 PubMed DOI PMC
Sohrabi Y, Havelková H, Kobets T, Šíma M, Volkova V, Grekov I, et al. . Mapping the genes for susceptibility and response to Leishmania tropica in mouse. PloS Negl Trop Dis (2013) 7(7):e2282. doi: 10.1371/journal.pntd.0002282 PubMed DOI PMC
Grekov I, Svobodová M, Nohýnková E, Lipoldová M. Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium. J Microbiol Methods (2011) 87(3):273–7. doi: 10.1016/j.mimet.2011.08.012 PubMed DOI
Sádlová J, Svobodová M, Volf P. Leishmania major: effect of repeated passages through sandfly vectors or murine hosts. Ann Trop Med Parasitol (1999) 93(6):599–611. doi: 10.1080/0003498995810 PubMed DOI
Kobets T, Badalová J, Grekov I, Havelková H, Svobodová M, Lipoldová M. Leishmania parasite detection and quantification using PCR-ELISA. Nat Protoc (2010) 5:1074–80. doi: 10.1038/nprot.2010.68 PubMed DOI
Kurey I, Kobets T, Havelková H, Slapničková M, Quan L, Trtková K, et al. . Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection. Immunogenetics (2009) 61:619–33. doi: 10.1007/s00251-009-0392-9 PubMed DOI PMC
Sohrabi Y, Volkova V, Kobets T, Havelková H, Krayem I, Slapničková M, et al. . Genetic regulation of guanylate-binding proteins 2b and 5 during leishmaniasis in mice. Front Immunol (2018) 9:130. doi: 10.3389/fimmu.2018.00130 PubMed DOI PMC
Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B. QuantPrime–a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinf (2008) 9:465. doi: 10.1186/1471-2105-9-465 PubMed DOI PMC
Palus M, Sohrabi Y, Broman KW, Strnad H, Šíma M, Růžek D, et al. . A novel locus on mouse chromosome 7 that influences survival after infection with tick-borne encephalitis virus. BMC Neurosci (2018) 19(1):39. doi: 10.1186/s12868-018-0438-8 PubMed DOI PMC
Krayem I, Sohrabi Y, Javorková E, Volkova V, Strnad H, Havelková H, et al. . Genetic influence on frequencies of myeloid-derived cell subpopulations in mouse. Front Immunol (2022) 12:760881. doi: 10.3389/fimmu.2021.760881 PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics (2014) 30(15):2114–20. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (2011) 27(21):2957–63. doi: 10.1093/bioinformatics/btr507 PubMed DOI PMC
Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics (2010) 26(5):589–95. doi: 10.1093/bioinformatics/btp698 PubMed DOI PMC
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. . The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res (2010) 20(9):1297–303. doi: 10.1101/gr.107524.110 PubMed DOI PMC
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. . Integrative genomics viewer. Nat Biotechnol (2011) 29(1):24–6. doi: 10.1038/nbt.1754 PubMed DOI PMC
Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. . A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) (2012) 6(2):80–92. doi: 10.4161/fly.19695 PubMed DOI PMC
Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics (2015) 31(16):2745–7. doi: 10.1093/bioinformatics/btv195 PubMed DOI PMC
Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res (2010) 38(Web Server issue):W529–33. doi: 10.1093/nar/gkq399 PubMed DOI PMC
Celniker G, Nimrod G, Ashkenazy H, Glaser F, Martz E, Mayrose I. Et al, ConSurf: using evolutionary data to raise testable hypotheses about protein function. Israel J Chem (2013) 53(3-4):199–206. doi: 10.1002/ijch.201200096 DOI
Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. . ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res (2016) 44(W1):W344–50. doi: 10.1093/nar/gkw408 PubMed DOI PMC
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. . PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet (2007) 81(3):559–75. doi: 10.1086/519795 PubMed DOI PMC
Vladimirov V, Badalová J, Svobodová M, Havelková H, Hart AA, Blazková H, et al. . Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice. Infect Immun (2003) 71(4):2041–6. doi: 10.1128/IAI.71.4.2041-2046.2003 PubMed DOI PMC
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol (2022) 23(6):407–27. doi: 10.1038/s41580-022-00452-3 PubMed DOI PMC
Fagerlie SR, Bagby GC. Immune defects in fanconi anemia. Crit Rev Immunol (2006) 26(1):81–96. doi: 10.1615/critrevimmunol.v26.i1.40 PubMed DOI
Cunniff C, Bassetti JA, Ellis NA. Bloom's syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol (2017) 8(1):4–23. doi: 10.1159/000452082 PubMed DOI PMC
Mönnich M, Hess I, Wiest W, Bachrati C, Hickson ID, Schorpp M, et al. . Developing T lymphocytes are uniquely sensitive to a lack of topoisomerase III alpha. Eur J Immunol (2010) 40(9):2379–84. doi: 10.1002/eji.201040634 PubMed DOI
Richnau N, Aspenström P. Rich, a rho GTPase-activating protein domain-containing protein involved in signaling by Cdc42 and Rac1. J Biol Chem (2001) 276(37):35060–70. doi: 10.1074/jbc.M103540200 PubMed DOI
Ladinsky MS, Araujo LP, Zhang X, Veltri J, Galan-Diez M, Soualhi S, et al. . Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science (2019) 363(6431):eaat4042. doi: 10.1126/science.aat4042 PubMed DOI PMC
Tackenberg H, Möller S, Filippi MD, Laskay T. The small GTPase Cdc42 is a major regulator of neutrophil effector functions. Front Immunol (2020) 11:1197. doi: 10.3389/fimmu.2020.01197 PubMed DOI PMC
Kulkarni A, Nadler JL, Mirmira RG, Casimiro I. Regulation of tissue inflammation by 12-lipoxygenases. Biomolecules (2021) 11(5):717. doi: 10.3390/biom11050717 PubMed DOI PMC
Mouse genome informatics. Available at: http://www.mousephenotype.org (Accessed April 22, 2022).
Krulová M, Havelková H, Kosarová M, Holán V, Hart AA, Demant P, et al. . IL-2-induced proliferative response is controlled by loci Cinda1 and Cinda2 on mouse chromosomes 11 and 12: a distinct control of the response induced by different IL-2 concentrations. Genomics (1997) 42(1):11–5. doi: 10.1006/geno.1997.4694 PubMed DOI
Havelková H, Krulová M, Kosarová M, Holán V, Hart AA, Demant P, et al. . Genetic control of T-cell proliferative response in mice linked to chromosomes 11 and 15. Immunogenetics (1996) 44(6):475–7. doi: 10.1007/BF02602810 PubMed DOI
Matesic LE, De Maio A, Reeves RH. Mapping lipopolysaccharide response loci in mice using recombinant inbred and congenic strains. Genomics (1999) 62(1):34–41. doi: 10.1006/geno.1999.5986 PubMed DOI
Hernandez-Valladares M, Rihet P, ole-MoiYoi OK, Iraqi FA. Mapping of a new quantitative trait locus for resistance to malaria in mice by a comparative mapping approach with human chromosome 5q31-q33. Immunogenetics (2004) 56(2):115–7. doi: 10.1007/s00251-004-0667-0 PubMed DOI
Bubier JA, Philip VM, Quince C, Campbell J, Zhou Y, Vishnivetskaya T, et al. . A microbe associated with sleep revealed by a novel systems genetic analysis of the microbiome in collaborative cross mice. Genetics (2020) 214(3):719–33. doi: 10.1534/genetics.119.303013 PubMed DOI PMC
Baker D, Rosenwasser OA, O'Neill JK, Turk JL. Genetic analysis of experimental allergic encephalomyelitis in mice. J Immunol (1995) 155(8):4046–51. doi: 10.4049/jimmunol.155.8.4046 PubMed DOI
Karlsson J, Zhao X, Lonskaya I, Neptin M, Holmdahl R, Andersson A. Novel quantitative trait loci controlling development of experimental autoimmune encephalomyelitis and proportion of lymphocyte subpopulations. J Immunol (2003) 170(2):1019–26. doi: 10.4049/jimmunol.170.2.1019 PubMed DOI
Ludwig RJ, Müller S, Ad M, Recke A, Schmidt E, Zillikens D, et al. . Identification of quantitative trait loci in experimental epidermolysis bullosa acquisita. J Invest Dermatol (2012) 132(5):1409–15. doi: 10.1038/jid.2011.466 PubMed DOI
Hou J, van Leeuwen J, Andrews BJ, Boone C. Genetic network complexity shapes background-dependent phenotypic expression. Trends Genet (2018) 34(8):578–86. doi: 10.1016/j.tig.2018.05.006 PubMed DOI PMC
Shibahara S, Okinaga S, Tomita Y, Takeda A, Yamamoto H, Sato M, et al. . A point mutation in the tyrosinase gene of BALB/c albino mouse causing the cysteine–-serine substitution at position 85. Eur J Biochem (1990) 189(2):455–61. doi: 10.1111/j.1432-1033.1990.tb15510.x PubMed DOI
Dudakovic A, Nam HK, Wijnen AJV, Hatch NE. Genetic background dependent modifiers of craniosynostosis severity. J Struct Biol (2020) 212(3):107629. doi: 10.1016/j.jsb.2020.107629 PubMed DOI PMC
Qiu J, Ogus S, Mounzih K, Ewart-Toland A, Chehab FF. Leptin-deficient mice backcrossed to the BALB/cJ genetic background have reduced adiposity, enhanced fertility, normal body temperature, and severe diabetes. Endocrinology (2001) 142(8):3421–5. doi: 10.1210/endo.142.8.8323 PubMed DOI
Hummel KP, Coleman DL, Lane P. The influence of genetic background on expression of mutations at the diabetes locus in the mouse C57BL/KsJ and C57BL/6J strains. Biochem Genet (1972) 7(1):1–13. doi: 10.1007/BF00487005 PubMed DOI
Soares H, Waechter H, Glaichenhaus N, Mougneau E, Yagita H, Mizenina O, et al. . A subset of dendritic cells induces CD4+ T cells to produce IFN-gamma by an IL-12-independent but CD70-dependent mechanism in vivo. J Exp Med (2007) 204(5):1095–106. doi: 10.1084/jem.20070176 PubMed DOI PMC
Gómez-Zafra MJ, Navas A, Jojoa J, Murillo J, González C, Gómez MA. Immune profile of the nasal mucosa in patients with cutaneous leishmaniasis. Infect Immun (2020) 88(5):e00881–19. doi: 10.1128/IAI.00881-19 PubMed DOI PMC
Hollingsworth LR, Sharif H, Griswold AR, Fontana P, Mintseris J, Dagbay KB, et al. . DPP9 sequesters the c terminus of NLRP1 to repress inflammasome activation. Nature (2021) 592(7856):778–83. doi: 10.1038/s41586-021-03350-4 PubMed DOI PMC
Zheng Z, Huang G, Gao T, Huang T, Zou M, Zou Y, et al. . Epigenetic changes associated with interleukin-10. Front Immunol (2020) 11:1105. doi: 10.3389/fimmu.2020.01105 PubMed DOI PMC
Marasca F, Sinha S, Vadalà R, Polimeni B, Ranzani V, Paraboschi EM, et al. . LINE1 are spliced in non-canonical transcript variants to regulate T cell quiescence and exhaustion. Nat Genet (2022) 54(2):180–93. doi: 10.1038/s41588-021-00989-7 PubMed DOI
Muxel SM, Acuña SM, Aoki JI, Zampieri RA, Floeter-Winter LM. Toll-like receptor and miRNA-let-7e expression alter the inflammatory response in Leishmania amazonensis-infected macrophages. Front Immunol (2018) 9:2792. doi: 10.3389/fimmu.2018.02792 PubMed DOI PMC
Fenini G, Karakaya T, Hennig P, Di Filippo M, Beer HD. The NLRP1 inflammasome in human skin and beyond. Int J Mol Sci (2020) 21(13):4788. doi: 10.3390/ijms21134788 PubMed DOI PMC
Gupta G, Santana AKM, Gomes CM, Turatti A, Milanezi CM, Bueno Filho R, et al. . Inflammasome gene expression is associated with immunopathology in human localized cutaneous leishmaniasis. Cell Immunol (2019) 341:103920. doi: 10.1016/j.cellimm.2019.04.008 PubMed DOI
Menge DM, Behnke JM, Lowe A, Gibson JP, Iraqi FA, Baker RL, et al. . Mapping of chromosomal regions influencing immunological responses to gastrointestinal nematode infections in mice. Parasite Immunol (2003) 25(6):341–9. doi: 10.1046/j.1365-3024.2003.00640.x PubMed DOI
Noll KE, Whitmore AC, West A, McCarthy MK, Morrison CR, Plante KS, et al. . Complex genetic architecture underlies regulation of influenza-a-virus-specific antibody responses in the collaborative cross. Cell Rep (2020) 31(4):107587. doi: 10.1016/j.celrep.2020.107587 PubMed DOI PMC
Turner JK, McAllister MM, Xu JL, Tapping RI. The resistance of BALB/cJ mice to Yersinia pestis maps to the major histocompatibility complex of chromosome 17. Infect Immun (2008) 76(9):4092–9. doi: 10.1128/IAI.00488-08 PubMed DOI PMC