Simple Chemical and Cholinesterase Methods for the Detection of Nerve Agents Using Optical Evaluation
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
SGS23/084/OHK5/1T/17
Czech Technical University in Prague
PubMed
38131755
PubMed Central
PMC10741445
DOI
10.3390/bios13120995
PII: bios13120995
Knihovny.cz E-resources
- Keywords
- biosensors, chemosensors, cholinesterase reaction, colour reactions, fluorescence, nerve agents,
- MeSH
- Cholinesterases MeSH
- Nerve Agents * analysis MeSH
- Reproducibility of Results MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Cholinesterases MeSH
- Nerve Agents * MeSH
The extreme toxicity of nerve agents and the broad spectrum of their physical and chemical properties, enabling the use of these agents in a variety of tactical situations, is a continuing challenge in maintaining the knowledge and capability to detect them, as well as in finding new effective methods. Despite significant advances in the instrumentation of the analysis of nerve agents, relatively simple methods based on the evaluation of colour signals (absorption and fluorescence), in particular those using the cholinesterase reaction, continue to be of importance. This review provides a brief presentation of the current status of these simple methods, with an emphasis on military applications, and illustrates the high interest of the professional community in their further development. At the same time, it also contains some peculiarities (high reliability and durability, resistance to extreme climatic conditions, work in deployed means of protection, low purchase prices, economic availability especially in a state of war, etc.) that the authors believe research and development of simple methods and means for the detection of nerve agents should respect.
See more in PubMed
Tucker J.B. Innovation, Dual Use, and Security. MIT Press; Cambridge, MA, USA: 2012. DOI
Halámek E. Trendy vývoje prostředků chemického průzkumu a kontroly [Development trends in chemical reconnaissance and control equipment] Vojen. Rozhl. 2000:89–94.
Durst H.D., McGarvey D.J., Samuels A.C., Williams B.R. Literature Review of Colorimetric Indicators for Nerve-Agent Detection. Chemical Biological Center; Aberdeen, MD, USA: 2023. U.S. Army Combat Capabilities Development Command.
Franke S. Textbook of Military Chemistry. Militärverlag der DDR; Berlin, Germany: 1977. Lehrbuch der Militärchemie; pp. 381–389. Band 1.
Watson A., Opresko D., Young R.A., Hauschild V., King J., Bakshi K. Handbook of Toxicology of Chemical Warfare Agents. Elsevier; Amsterdam, The Netherlands: 2015. Organophosphate nerve agents; pp. 87–109. DOI
Groehler O. The Silent Death. Verlag der Nation der DDR; Berlin, Germany: 1978. Der lautlose Tod; pp. 300–302.
Ellison D.H. Handbook of Chemical and Biological Agents. CRC Press; Boca Raton, FL, USA: 2008. DOI
Hoenig S.L. Compendium of Chemical Warfare Agents. Springer; New York, NY, USA: 2007. pp. 78–79. DOI
König W. Über eine neue, vom Pyridin derivierende Klasse von Farbenstoffen [On a new class of dyes derived from pyridine] J. Prakt. Chem. 1904;69:105–137. doi: 10.1002/prac.19040690107. DOI
Feigl F., Caldas A. Catalytic detection of cyanide through the benzoin condensation. Microchem. Acta. 1955;43:992–995. doi: 10.1007/BF01223996. DOI
Zelder F.H., Männel-Croisé C. Recent advances in the colorimetric detection of cyanide. Chimia. 2009;63:58–62. doi: 10.2533/chimia.2009.58. DOI
Xu Z., Chen X., Kim H.N., Yoon J. Sensors for the optical detection of cyanide ion. Chem. Soc. Rev. 2010;39:127–137. doi: 10.1039/B907368J. PubMed DOI
Kumar V. Urea/thiourea based optical sensors for toxic analytes: A convenient path for detection of first nerve agent (Tabun) Bull. Chem. Soc. Jpn. 2021;94:309–326. doi: 10.1246/bcsj.20200285. DOI
Stone I. Detection of fluorides using the zirkonium lake of alizarin. J. Chem. Educ. 1931;8:347. doi: 10.1021/ed008p347. DOI
Saranchina N.V., Slizhov Y.G., Vodova Y.M., Murzakasymova N.S., Ilyina A.M., Gavrilenko N.A., Gavrilenko M.M. Smartphone-based colorimetric determination of fluoride anions using polymethacrylate optode. Talanta. 2021;226:122103. doi: 10.1016/j.talanta.2021.122103. PubMed DOI
Halámek E., Kobliha Z., Pitschmann V. Analysis of Chemical Warfare Agents. University of Defence; Brno, Czech Republic: 2009.
Halámek E., Kobliha Z., Skaličan Z. Spectrophotometric determination of 2-dimethylaminoethanethiol with Giunea Green B and Malachite Green carbinol dichloride. Sborník VVŠ PV (Tech. A Přírodní Vědy) 1998:237–247. (In Czech)
Ellman G.L. A colorimetric method for determining low concentrations of mercaptans. Arch. Biochem. Biophys. 1958;74:443–450. doi: 10.1016/0003-9861(58)90014-6. PubMed DOI
Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6. PubMed DOI
Pitschmann V., Matějovský L., Kobliha Z. Detection of 2-(dialkylamino)ethanethiols and V-series nerve agents in water and aqueous solutions using Folin-Ciocalteu reagent. Mil. Med. Sci. Lett. (Vojen. Zdr. Listy) 2013;82:149–155. doi: 10.31482/mmsl.2013.024. DOI
Pitschmann V., Matějovský L., Kobliha Z., Hon Z. A simple colorimetric detector of symmetric 2-(dialkylamino)ethanethiols as precursors of V-type nerve agents. J. Chil. Chem. Soc. 2014;59:2606–2609. doi: 10.4067/S0717-97072014000300017. DOI
Zheng X., Okolotowicz K., Wang B., MacDonald M., Cashman J.R., Zhang J. Direct detection of the hydrolysis of nerve agent model compounds using a fluorescent probe. Chem.-Biol. Interact. 2010;187:330–334. doi: 10.1016/j.cbi.2010.01.027. PubMed DOI PMC
Poziomek E.J., Crabtree E.V. Review of the Schoenemann reaction in analysis and detection of organophosphorus compounds. J. AOAC. 1973;56:56–62. doi: 10.1093/jaoac/56.1.56. DOI
Grant G.A., Blanchfield R., Smith D.M. Triarylmethane compounds as redox indicators in the Schoenemann reaction. I. Mechanism of the Schoenemann reaction. Can. J. Chem. 1957;35:40–47. doi: 10.1139/v57-008. DOI
Larsson L. A kinetic study of the reaction of isopropoxy-methyl-phosphoryl fluoride (sarin) with hydrogen peroxide. Acta Chem. Scand. 1958;12:723–730. doi: 10.3891/acta.chem.scand.12-0723. DOI
Goldenson J. Detection of nerve gases by chemiluminiscence. Anal. Chem. 1957;29:877–879. doi: 10.1021/ac60126a004. DOI
Leslie D.R., Szafraniec L.L., Rohrbaugh D.K., Szafraniec L.J. Structure Determination of Compound 34. U.S. Army Armament Munitions Chemical Command; Aberdeen, MD, USA: 1991. [(accessed on 10 September 2023)]. CRDEC-TR-299. Available online: https://apps.dtic.mil/sti/citations/ADA242765.
Cherry R.H., Foley G.M., Badgett C.D., Eanes R.D., Smith H.R. Alarms and analyzers for nerve gas vapors. Anal. Chem. 1958;30:1239–1247. doi: 10.1021/ac60139a016. DOI
Smart J.K. History of Chemical and Biological Detectors, Alarm, and Warning Systems. U.S. Army Soldiers and Biological Chemical Command; Aberdeen, MD, USA: 2000.
Brletich N.R., Waters M.J., Bowen G.W., Tracy M.F. Worldwide Chemical Detection Equipment Handbook. Chemical and Biological Defense Information Analysis Center; Aberdeen, MD, USA: 1955.
Historie Chemického Vojska [History of Chemical Corps] MNO—Správa Chemického Vojska; Prague, Czech Republic: 1970.
Wu S., Wang L., Zhu H., Yuan L., Li J., Ge L., Zhang H., Miao T., Cheng Z. Optimizing the Schoenemann reaction for colorimetric assays of VX and GD. Bull. Environ. Contam. Toxicol. 2023;110:53. doi: 10.1007/s00128-023-03693-w. PubMed DOI
Zhang Q., Yang Y., Xia J., Zhang Y., Liu S., Yuan Z. Array-based chemical warfare agent discrimination via organophosphorus-H2O2 reaction-regulated chemiluminiscence. RSC Adv. 2012;12:19246–19252. doi: 10.1039/D2RA02420A. PubMed DOI PMC
Epstein J., Rosenthal R.W., Ess R.J. Use of γ-(4-nitrobenzyl) pyridine as analytical reagent for ethylenimines and alkylating agents. Anal. Chem. 1955;27:1435–1439. doi: 10.1021/ac60105a022. DOI
Saville B. A new approach to the determination of microgram quantities of phosphorylating or acylating agents. Analyst. 1957;82:269–274. doi: 10.1039/an9578200269. DOI
Sass S., Ludemann W.D., Witten B., Fischer V., Sisti A.J., Miller J.I. Colorimetric determination of certain organophosphorus compounds and acylating agents. Anal. Chem. 1957;29:1346–1349. doi: 10.1021/ac60129a027. DOI
Ordroneau L., Carella A., Pohanka M., Simonato J.P. Chromogenic detection of sarin by discolouring decomplexation of a metal coordination complex. Chem. Commun. 2013;49:8946–8948. doi: 10.1039/c3cc45029e. PubMed DOI
Weis J.G., Swager T.M. Thiophene-fused tropones as chemical warfare agent-responsive building blocks. ACS Macro Lett. 2015;4:138–142. doi: 10.1021/mz5007848. PubMed DOI
Augustinsson K.B. Assay methods for cholinesterases. In: Vol V., Glick D., editors. Methods of Biochemical Analysis. Interscience Publishers; New York, NY, USA: 1957. pp. 1–63. PubMed DOI
Holas O., Musilek K., Pohanka M., Kuca K. The progress ih the cholinesterase quantification methods. Exp. Opin. Drug Discov. 2012;7:1207–1223. doi: 10.1517/17460441.2012.729037. PubMed DOI
Pohanka M., Vlček V., Žďárová-Karasová J., Kuča K., Cabal J., Fusek J. Acetylcholinesterase based colorimetric dipsticks for military performance: Principles and construction. AiMT. 2012;7:83–91.
Schmaltz F. Kampfstoff-Forschung im Nationalsozialismus [Chemical Warfare Agents Research during National Socialism] Wallstein; Göttingen, Germany: 2005. p. 510.
Limperos G., Ranta K.E. A rapid screening test for the determination of the approximate cholinesterase activity of human blood. Science. 1953;117:453–455. doi: 10.1126/science.117.3043.453. PubMed DOI
Zacks S.I., Blumberg J.M. Simple and inexpensive anti-cholinesterase detectors for field use. Mil. Med. 1964;129:1084–1086. doi: 10.1093/milmed/129.11.1084. PubMed DOI
Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–90. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Vymazalová K., Halámek E., Kadlčák J. Cholinesterase biosensor for detection of nerve agents. Chem. Listy. 2016;110:645–650.
Pohanka M., Hrabinova M., Kuca K. Diagnosis of intoxication by the organophosphate VX: Comparison between an electrochemical sensors and Ellman’s photometric method. Sensors. 2008;8:5229–5237. doi: 10.3390/s8095229. PubMed DOI PMC
Wu J., Zhu Y., Liu Y., Chen J., Guo L., Xie J. A novel approach for in-site screening of organophosphorus nerve agents based on DTNB modified AgNPs using surface-enhanced Raman spectrometry. Anal. Methods. 2022;14:4263–4291. doi: 10.1039/D2AY01307J. PubMed DOI
Zhu J., Dhimitruka I., Pei D. 5-(2-Aminoethyl)dithio-2-nitrobenzoate as a more base-stable alternative to Ellman’s reagent. Org. Lett. 2004;6:3809–3812. doi: 10.1021/ol048404+. PubMed DOI
Bissbort S.H., Vermaak W.J.H., Elias J., Bester M.J., Dhatt G.S., Pum J.K.W. Novel test and its automation for determination of erythrocyte acetylcholinesterase and its application to organophosphate exposure. Clin. Chem. Acta. 2001;303:139–145. doi: 10.1016/S0009-8981(00)00388-0. PubMed DOI
Pitschmann V., Matějovský L., Dymák M., Dropa T., Urban M., Vošahlíková I. Cholinesterase inhibitor biosensors. Ecol. Saf. 2017;11:18–23.
Pitschmann V., Matějovský L., Vetchý D., Kobliha Z. Enzymatic determination of anticholinesterases using a composite carrier. Anal. Lett. 2016;49:2418–2426. doi: 10.1080/00032719.2016.1151889. DOI
Pitschmann V., Matějovský L., Lobotka M., Dědič J., Urban M., Dymák M. Modified biosensor for cholinesterase inhibitors with Guinea Green B as the color indicator. Biosensors. 2018;8:81. doi: 10.3390/bios8030081. PubMed DOI PMC
Matějovský L., Pitschmann V. A strip biosensor with Guinea Green B and Fuchsin Basic color indicators on a glass nanofiber carrier for the cholinesterase detection of nerve agents. ACS Omega. 2019;4:20978–20986. doi: 10.1021/acsomega.9b02153. PubMed DOI PMC
Barrnett R.J., Seligman A.M. Histochemical demonstration of esterase by production of indigo. Science. 1951;114:579–582. doi: 10.1126/science.114.2970.579. PubMed DOI
Guilbault G.G., Kramer D.N. Resorufin butyrate and indoxyl acetate as fluorogenic substrates for cholinesterase. Anal. Chem. 1965;31:120–123. doi: 10.1021/ac60220a031. PubMed DOI
Matoušek J., Fischer J., Cerman J. Nová fluorimetrická metoda stanovení submikrogramových kvant inhibitorů cholinesterázy [A new fluorimetric method for the determination of submicrogram quantities of cholinesterase inhibitors] Chemické Zvesti. 1968;22:184–189.
Pohanka M., Vlcek V. Preparation and performance of a colorimetric biosensor using acetylcholinesterase and indoxylacetate for assay of nerve agents and drugs. Interdiscip. Toxicol. 2014;7:215–218. doi: 10.2478/intox-2014-0031. PubMed DOI PMC
Gelman C., Kramer D.N. Enyzymatic Method for Detection of Anticholinesterases. 3,049,411. U.S. Patent. 1962 August 14;
Kramer D.N., Gamson R.M. Colorimetric determination of acetylcholinesterase activity. Anal. Chem. 1958;30:251–254. doi: 10.1021/ac60134a026. DOI
Fu Q., Zhang C., Xie J., Li Z., Qu L., Cai X., Ouyang H., Song Y., Du D., Lin Y., et al. Ambient light sensor based colorimetric dipstick reader for rapid monitoring organophosphate pesticides on a smartphone. Anal. Chim. Acta. 2019;1092:126–131. doi: 10.1016/j.aca.2019.09.059. PubMed DOI
Barendsz A.W. A detection tube for cholinesterase inhibiting compounds. Int. J. Environ. Anal. Chem. 1979;6:89–94. doi: 10.1080/03067317908071163. PubMed DOI
Chowdhary S., Bhattacharyya R., Banerjee D. A novel fluorescence based assay for the detection of organophosphorus pesticide exposed cholinesterase activity using 1-naphtyl acetate. Biochimie. 2019;160:100–112. doi: 10.1016/j.biochi.2019.02.014. PubMed DOI
Royo S., Martínez-Máñnez R., Sancenón F., Costero A.M., Parra M., Gil S. Chromogenic and fluorogenic reagents for chemical warfare nerve agents detection. Chem. Commun. 2007;46:4839–4847. doi: 10.1039/b707063b. PubMed DOI
Burnworth M., Rowan S.J., Weder C. Fluorescent sensors for the detection of chemical warfare agents. Chem. Eur. J. 2007;13:7828–7836. doi: 10.1002/chem.200700720. PubMed DOI
Kangas M.J., Burks R.M., Atwater J., Lukowicz R.M., Williams P., Holmes A.E. Colorimetric sensors arrays for the detection and identification of chemical weapons and explosives. Crit. Rev. Anal. Chem. 2017;47:138–153. doi: 10.1080/10408347.2016.1233805. PubMed DOI PMC
Chen L., Wu D., Yoon J. Recent advances in the development of chromofore-based chemosensors for nerve agents and phosgene. ACS Sensors. 2018;3:27–43. doi: 10.1021/acssensors.7b00816. PubMed DOI
Kumar V., Kim H., Pandey B., James T.D., Yoon J., Anslyn E.V. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: A legacy of the 21st century. Chem. Soc. Rev. 2023;52:663–704. doi: 10.1039/D2CS00651K. PubMed DOI
Lyagin I.V., Efremenko E.N. Enzymes and their forms used in detection of organophosphorus compounds. J. NBC Prot. Corps. 2021;5:22–41. doi: 10.35825/2587-5728-2021-5-1-22-41. DOI
Xu Y.L., Li F.Y., Ndikuryayo F., Yang W.C., Wang H.M. Cholinesterases and engineered mutants for the detection of organophosphorus pesticide residues. Sensors. 2018;18:4281. doi: 10.3390/s18124281. PubMed DOI PMC
Chibata I., editor. Immobilized Enzymes: Research and Development. Kodansha; Tokyo, Japan: John Wiley; New York, NY, USA: London, UK: 1978. DOI
Datta S., Christena L.R., Rajaram Y.R.S. Enzyme immobilization: An overview on techniques and support materials. 3 Biotech. 2013;3:1–9. doi: 10.1007/s13205-012-0071-7. PubMed DOI PMC
Zeman J., Vetchý D., Franc A., Pavloková S., Pitschmann V., Matějovský L. The development of a butyrylcholinesterase porous pellet for innovative detection of cholinesterase inhibitors. Eur. J. Pharm. Sci. 2017;109:548–555. doi: 10.1016/j.ejps.2017.09.015. PubMed DOI
Velikanov N.L., Kolesnikova I.G., Liakh S.P. Acetylcholinesterase activity of bacteria of the genus Pseudomonas. Mikrobiologiia. 1975;44:761–762. (In Russian) PubMed
Garber N., Nachshon I. Localization of cholinesterase in Pseudomonas aeruginosa strain K. J. Gen. Microbiol. 1980;117:279–283. doi: 10.1099/00221287-117-1-279. PubMed DOI
Prasad S.N., Bansal V., Ramanathan R. Detection of pesticides using nanozymes: Trends, challenges and outlook. Trends Anal. Chem. 2021;144:116429. doi: 10.1016/j.trac.2021.116429. DOI
Robert A., Meunier B. How to define a nanozyme. ACS Nano. 2022;16:6956–6959. doi: 10.1021/acsnano.2c02966. PubMed DOI
Thakur S., Kumar P., Reddy M.V., Siddavattam D., Paul A.K. Enhancement in sensitivity of fluorescence based assay for organophosphates detection by silica coated silver nanoparticles using organophosphate hydrolase. Sens. Actuators B-Chem. 2013;178:458–464. doi: 10.1016/j.snb.2013.01.010. DOI
Bottcher D., Bornscheuer U.T. Protein engineering of microbial enzymes. Curr. Opin. Microbiol. 2010;13:274–282. doi: 10.1016/j.mib.2010.01.010. PubMed DOI
Villate F., Marcel V., Estrada-Mondaca S., Fournier D. Engineering sensitive acetylcholinesterase for detection of organophosphate and carbamate insecticides. Biosens. Bioelectron. 1998;13:157–164. doi: 10.1016/S0956-5663(97)00108-5. PubMed DOI
Kovarik Z., Hrvat N.M. Efficient detoxification of nerve agents by oxime-assisted reactivation of acetylcholinesterase mutants. Neuropharmacology. 2020;171:108111. doi: 10.1016/j.neuropharm.2020.108111. PubMed DOI
Weber F., Nagel R., Kytzia H.J., Muecke M., Gottschalk N. Stabilized Cholinesterase Substrate Solution. Application 11/566,788. U.S. Patent. 2007 August 2;
Hoskovcová M., Dubina P., Halámek E., Kobliha Z. Identification of pairs of organophosphorus warfare agents through cholinesterase reaction. Anal. Lett. 2011;44:2521–2529. doi: 10.1080/00032719.2011.551860. DOI
Hoskovcová M. Differentiation of nerve agents by biochemical method. Sci. Popul. Prot. 2018;10:1–8.
Potential Military Chemical/Biological Agents and Compounds. Eximdyne; Wentzeville, MO, USA: 2005.
Meng W., Pei Z., Wang Y., Sun M., Xu Q., Cen J., Guo K., Xiao K., Li Z. Two birds wit one stone: The detection of nerve agents and AChE activity with an ICT-ESIPT-based fluorescence sensor. J. Hazard. Mater. 2021;410:124811. doi: 10.1016/j.jhazmat.2020.124811. PubMed DOI
Gaudin V. Recent Developments on Colorimetric and Dual Colorimetric/Fluorimetric Enzymatic Biosensors for the Detection of Pesticides in Food. Preprints. 2023:2023070526. doi: 10.20944/preprints202307.0526.v1. DOI
Kostelnik A., Cegan A., Pohanka M. Color change of Phenol Red by integrated smart phone camera as a tool for the determination of neurotoxic compounds. Sensors. 2016;16:121. doi: 10.3390/s16091212. PubMed DOI PMC