Microrobots in food science and technology

. 2025 Dec ; 6 (12) : 1124-1132. [epub] 20251203

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41339756
Odkazy

PubMed 41339756
DOI 10.1038/s43016-025-01261-5
PII: 10.1038/s43016-025-01261-5
Knihovny.cz E-zdroje

The global food supply chain is highly susceptible to spoilage and contamination risks, posing severe health hazards to consumers. This creates the need for preservation and safety-monitoring methods to reduce the exposure of both industries and consumers to these risks. Recent innovations using functional materials to construct nano- and microrobots of different shapes and sizes show substantial improvements in optimizing various food processes. Here we review the benefits of applying autonomous functional microrobotics to food science and technology, focusing on applications in food safety control, preservation and processing. We identify current limitations specific to each application and general constraints that must be overcome to transition from proof of concept to real-world implementation in the food industry.

Zobrazit více v PubMed

Wang, Y., Borgatta, J. & White, J. C. Protecting foods with biopolymer fibres. Nat. Food 3, 402–403 (2022). PubMed DOI

Snyder, A. B., Martin, N. & Wiedmann, M. Microbial food spoilage: impact, causative agents and control strategies. Nat. Rev. Microbiol. 22, 528–542 (2024). PubMed DOI

Sanders, T. A. B. Food production and food safety. BMJ 318, 1689–1693 (1999). PubMed DOI PMC

Camino Feltes, M. M., Arisseto-Bragotto, A. P. & Block, J. M. Food quality, food-borne diseases, and food safety in the Brazilian food industry. Food Qual. Saf. 1, 13–27 (2017). DOI

Smith, J. L. & Fratamico, P. M. Emerging and re-emerging foodborne pathogens. Foodborne Pathog. Dis. 15, 737–757 (2018). DOI

Bélanger, P., Tanguay, F., Hamel, M. & Phypers, M. An overview of foodborne outbreaks in Canada reported through Outbreak Summaries: 2008–2014. Can. Commun. Dis. Rep. 41, 254–262 (2015). PubMed DOI PMC

Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021). PubMed DOI

Sarno, E., Pezzutto, D., Rossi, M., Liebana, E. & Rizzi, V. A review of significant European foodborne outbreaks in the last decade. J. Food Prot. 84, 2059–2070 (2021). PubMed DOI

Beltran-Alcrudo, D., Falco, J. R., Raizman, E. & Dietze, K. Transboundary spread of pig diseases: the role of international trade and travel. BMC Vet. Res. 15, 64 (2019). PubMed DOI PMC

Vandeweyer, D., Lievens, B. & Campenhout, L. V. Identification of bacterial endospores and targeted detection of foodborne viruses in industrially reared insects for food. Nat. Food 1, 511–516 (2020). PubMed DOI

Villalonga, A., Sánchez, A., Mayol, B., Reviejo, J. & Villalonga, R. Electrochemical biosensors for food bioprocess monitoring. Curr. Opin. Food Sci. 43, 18–26 (2022). DOI

Nahar, S., Mizan, M. F. R., Ha, A. J.-W. & Ha, S.-D. Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Compr. Rev. Food Sci. Food Saf. 17, 1484–1502 (2018). PubMed DOI

Bhanja, A., Nanda, R. & Mishra, M. in Bio- and Nano-sensing Technologies for Food Processing and Packaging (ed. Shukla, A. K.) 181–198 (Royal Society of Chemistry, 2022); https://doi.org/10.1039/9781839167966

Peters, R. J. B. et al. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci. Technol. 54, 155–164 (2016). DOI

Dey, A., Pandey, G. & Rawtani, D. Functionalized nanomaterials driven antimicrobial food packaging: a technological advancement in food science. Food Control 131, 108469 (2022). DOI

Chen, H. et al. Nanomaterials as optical sensors for application in rapid detection of food contaminants, quality and authenticity. Sens. Actuators B 329, 129135 (2021). DOI

Mundaca-Uribe, R., Askarinam, N., Fang, R. H., Zhang, L. & Wang, J. Towards multifunctional robotic pills. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01090-6 (2023).

Nelson, B. J. & Pané, S. Delivering drugs with microrobots. Science 382, 1120–1122 (2023). PubMed DOI

Fernández-Medina, M., Ramos-Docampo, M. A., Hovorka, O., Salgueiriño, V. & Städler, B. Recent advances in nano- and microrobots. Adv. Funct. Mater. 30, 1908283 (2020). DOI

Allard, C. Adaptable navigation of magnetic microrobots. Nat. Rev. Mater. 9, 90 (2024). DOI

Hu, Y., Liu, W. & Sun, Y. Self-propelled micro-/nanorobots as ‘on-the-move' platforms: cleaners, sensors, and reactors. Adv. Funct. Mater. 32, 2109181 (2022). DOI

Wang, T., Wu, Y., Yildiz, E., Kanyas, S. & Sitti, M. Clinical translation of wireless soft robotic medical devices. Nat. Rev. Bioeng. 2, 470–485 (2024). DOI

Yuan, K., Jiang, Z., Jurado-Sánchez, B. & Escarpa, A. Nano/micro-robots for diagnosis and therapy of cancer and infectious diseases. Chem. Eur. J. 26, 2309–2326 (2020). PubMed DOI

Esteban-Fernández de Ávila, B. et al. Microrobots go in vivo: from test tubes to live animals. Adv. Funct. Mater. 28, 1705640 (2018). DOI

Urso, M., Ussia, M. & Pumera, M. Smart micro- and nanorobots for water purification. Nat. Rev. Bioeng. 1, 236–251 (2023). PubMed DOI PMC

Ge, H., Chen, X., Liu, W., Lu, X. & Gu, Z. Metal-based transient microrobots: from principle to environmental and biomedical applications. Chem. Asian J. 14, 2348–2356 (2019). PubMed DOI

Dan, J. et al. Micro/nanorobot technology: the new era for food safety control. Crit. Rev. Food Sci. Nutr. 64, 2032–2052 (2024). PubMed DOI

Wang, Q. & Zhang, L. External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano. 15, 149–174 (2021). PubMed DOI

Wang, H. & Pumera, M. Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chem. Soc. Rev. 49, 3211–3230 (2020). PubMed DOI

Singh, V. V., Kaufmann, K., de Ávila, B. E.-F., Karshalev, E. & Wang, J. Molybdenum disulfide-based tubular microengines: toward biomedical applications. Adv. Funct. Mater. 26, 6270–6278 (2016). DOI

Kim, J., Mayorga-Martinez, C. C. & Pumera, M. Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption. Nat. Commun. 14, 935 (2023). PubMed DOI PMC

Chen, C., Karshalev, E., Guan, J. & Wang, J. Magnesium-based micromotors: water-powered propulsion, multifunctionality, and biomedical and environmental applications. Small 14, 1704252 (2018). DOI

Zhou, H., Mayorga-Martinez, C. C., Pané, S., Zhang, L. & Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 121, 4999–5041 (2021). PubMed DOI PMC

Chen, X.-Z. et al. Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today 9, 37–48 (2017). DOI

Li, J. C. C., Mayorga-Martinez, C.-D., Ohl, M. & Pumera, M. Ultrasonically propelled micro- and nanorobots. Adv. Funct. Mater. 32, 2102265 (2022). DOI

Chen, C., Soto, F., Karshalev, E., Li, J. & Wang, J. Hybrid nanovehicles: one machine, two engines. Adv. Funct. Mater. 29, 1806290 (2018). DOI

Ussia, M. et al. Magnetically driven self-degrading zinc-containing cystine microrobots for treatment of prostate cancer. Small 19, 2208259 (2023). DOI

Song, S.-J. et al. Precisely navigated biobot swarms of bacteria Magnetospirillum magneticum for water decontamination. ACS Appl. Mater. Interfaces 15, 7023–7029 (2023). PubMed DOI PMC

Mayorga-Martinez, C. C., Fojtů, M., Vyskočil, J., Cho, N.-J. & Pumera, M. Pollen-based magnetic microrobots are mediated by electrostatic forces to attract, manipulate, and kill cancer cells. Adv. Funct. Mater. 32, 2207272 (2022). DOI

Kim, J. et al. Advanced materials for micro/nanorobotics. Chem. Soc. Rev. 53, 9190–9253 (2024). PubMed DOI

Ussia, M. & Pumera, M. Towards micromachine intelligence: potential of polymers. Chem. Soc. Rev. 51, 1558–1572 (2022). PubMed DOI

Yang, K., Won, S., Park, J. E., Jeon, J. & Wie, J. J. Magnetic swarm intelligence of mass-produced, programmable microrobot assemblies for versatile task execution. Device 3, 100626 (2025). DOI

Wang, J. Self-propelled affinity biosensors: moving the receptor around the sample. Biosens. Bioelectron. 76, 234–242 (2016). PubMed DOI

Dai, B. et al. Fluid field modulation in mass transfer for efficient photocatalysis. Adv. Sci. 9, 2203057 (2022). DOI

Xiong, K. et al. An axis-asymmetric self-driven microrobot that can perform precession multiplying ‘on-the-fly’ mass transfer. Matter 6, 907–924 (2023). DOI

Karshalev, E., Esteban-Fernández de Ávila, B. & Wang, J. Microrobots for ‘chemistry-on-the-fly’. J. Am. Chem. Soc. 140, 3810–3820 (2018). PubMed DOI

Rojas, D., Jurado-Sanchez, B. & Escarpa, A. ‘Shoot and sense’ Janus microrobots-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples. Anal. Chem. 88, 4153–4160 (2016). PubMed DOI

Kong, L., Guan, J. & Pumera, M. Micro- and nanorobots based sensing and biosensing. Curr. Opin. Electrochem. 10, 174–182 (2018). DOI

Luo, Y. et al. MnFe PubMed DOI

Toh, S. Y., Citartan, M., Gopinath, S. C. B. & Tang, T.-H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron. 64, 392–403 (2015). PubMed DOI

Esteban-Fernandez de Avila, B. et al. Aptamer-modified graphene-based catalytic microrobots: off−on fluorescent detection of ricin. ACS Sens. 1, 217–221 (2016). DOI

Molinero-Fernandez, A., Jodra, A., Moreno-Guzman, M., Lopez, M. A. & Escarpa, A. Magnetic reduced graphene oxide/nickel/platinum nanoparticles microrobots for mycotoxin analysis. Chem. Eur. J. 24, 7172–7176 (2018). PubMed DOI

Maria-Hormigos, R., Jurado-Sanchez, B. & Escarpa, A. Carbon allotrope nanomaterials based catalytic microrobots. Chem. Mater. 28, 8962–8970 (2016). DOI

Molinero-Fernandez, A., Moreno-Guzman, M., Lopez, M. A. & Escarpa, A. Biosensing strategy for simultaneous and accurate quantitative analysis of mycotoxins in food samples using unmodified graphene microrobots. Anal. Chem. 89, 10850–10857 (2017). PubMed DOI

Wen, J., Xu, Y., Li, H., Lu, A. & Sun, S. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem. Commun. 51, 11346–11358 (2015). DOI

Jurado-Sánchez, B., Pacheco, M., Rojo, J. & Escarpa, A. Magnetocatalytic graphene quantum dots Janus microrobots for bacterial endotoxin detection. Angew. Chem. Int. Ed. 56, 6957–6961 (2017). DOI

Pacheco, M., Jurado-Sánchez, B. & Escarpa, A. Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors. Anal. Chem. 90, 2912–2917 (2018). PubMed DOI

Su, W. & Ding, X. Methods of endotoxin detection. J. Lab. Autom. 20, 354–364 (2015). PubMed DOI

Sorbo, A. et al. Food safety assessment: overview of metrological issues and regulatory aspects in the European Union. Separations 9, 53 (2022). DOI

Romero-González, R. Food safety: how analytical chemists ensure it. Anal. Methods 7, 7193–7201 (2015). DOI

Singh, V. V. et al. Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chem. Commun. 51, 11190–111903 (2015). DOI

Zhang, Y. et al. Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of C. diff toxins. Sci. Adv. 5, eaau9650 (2019). PubMed DOI PMC

Yuan, K., López, M. Á, Jurado-Sánchez, B. & Escarpa, A. Janus micromotors coated with 2d nanomaterials as dynamic interfaces for (bio)-sensing. ACS Appl. Mater. Interfaces 12, 46588–46597 (2020). PubMed DOI

Mayorga-Martinez, C. C. & Pumera, M. Self-propelled tags for protein detection. Adv. Funct. Mater. 30, 1906449 (2020). DOI

Turgis, M., Vu, K. D., Dupont, C. & Lacroix, M. Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Res. Int. 48, 696–702 (2012). DOI

Heymich, M.-L. et al. Generation of antimicrobial peptides Leg1 and Leg2 from chickpea storage protein, active against food spoilage bacteria and foodborne pathogens. Food Chem. 347, 128917 (2021). PubMed DOI

Fidan, H. et al. Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria: facts and gaps. Food Biosci. 47, 101741 (2022). DOI

Yuan, K., Jurado-Sánchez, B. & Escarpa, A. Dual-propelled lanbiotic based Janus microrobots for selective inactivation of bacteria biofilms. Angew. Chem. Int. Ed. 60, 4915–4924 (2021). DOI

Mayorga-Martinez, C. C., Castoralova, M., Zelenka, J., Ruml, T. & Pumera, M. Swarming magnetic microrobots for pathogen isolation from milk. Small https://doi.org/10.1002/smll.202205047 (2023).

Sun, F., Yao, M., Su, H., Yang, Q. & Wu, W. A magnetic fluorescent spirochetes microrobot: dynamic monitoring and in situ sterilization of foodborne pathogens. Sens. Actuators B. 385, 133679 (2023). DOI

Villa, K., Vyskočil, J., Ying, Y., Zelenka, J. & Pumera, M. Microrobots in brewery: dual magnetic/light-powered hybrid microrobots for preventing microbial contamination in beer. Chem. Eur. J. 26, 3039–3043 (2020). PubMed DOI

Herrador, Z., Gherasim, A., López-Vélez, R. & Benito, A. Listeriosis in Spain based on hospitalisation records, 1997 to 2015: need for greater awareness. Eur. Surveill. 24, 1800271 (2019). DOI

Alonso, V. A. et al. Fungi and mycotoxins in silage: an overview. J. Appl. Microbiol. 115, 637–643 (2013). PubMed DOI

Suiker, I. M. & Wösten, H. A. B. Spoilage yeasts in beer and beer products. Curr. Opin. Food Sci. 44, 100815 (2022). DOI

Srivastava, S. K. & Schmidt, O. G. Autonomously propelled robots for value-added product synthesis and purification. Chem. Eur. J. 22, 9072–9076 (2016). PubMed DOI

Maria-Hormigos, R., Jurado-Sánchez, B. & Escarpa, A. Surfactant-free β-galactosidase microrobots for ‘on-the-move’ lactose hydrolysis. Adv. Funct. Mater. 28, 1704256 (2018). DOI

Mou, F. et al. Self-propelled microrobots driven by the magnesium–water reaction and their hemolytic properties. Angew. Chem. Int. Ed. 52, 7208–7212 (2013). DOI

Wu, M., Koizumi, Y., Nishiyama, H., Tomita, I. & Inagi, S. Buoyant force-induced continuous floating and sinking of Janus microrobots. RSC Adv. 8, 33331–33337 (2018). PubMed DOI PMC

Maria-Hormigos, R., Mayorga-Martinez, C. C., Kinčl, T. & Pumera, M. Nanostructured hybrid BioBots for beer brewing. ACS Nano 17, 7595–7603 (2023). PubMed DOI PMC

Dabbagh, S. R. et al. 3D-printed microrobots from design to translation. Nat. Commun. 13, 5875 (2022). PubMed DOI PMC

Sharan, P., Nsamela, A., Lesher-Pérez, S. C. & Simmchen, J. Microfluidics for microswimmers: engineering novel swimmers and constructing swimming lanes on the microscale, a tutorial review. Small 17, 2007403 (2021). DOI

Ju, X. et al. Technology roadmap of micro/nanorobots. ACS Nano https://doi.org/10.1021/acsnano.5c03911 (2025).

Abbasi, S. A., et al. Autonomous 3D positional control of a magnetic microrobot using reinforcement learning. Nat. Mach. Intell. 6, 92–105 (2024). DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...