Microrobots in food science and technology
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
41339756
DOI
10.1038/s43016-025-01261-5
PII: 10.1038/s43016-025-01261-5
Knihovny.cz E-zdroje
- MeSH
- bezpečnost potravin * metody MeSH
- konzervace potravin metody MeSH
- lidé MeSH
- manipulace s potravinami metody MeSH
- potravinářská technologie * metody přístrojové vybavení MeSH
- robotika * přístrojové vybavení metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The global food supply chain is highly susceptible to spoilage and contamination risks, posing severe health hazards to consumers. This creates the need for preservation and safety-monitoring methods to reduce the exposure of both industries and consumers to these risks. Recent innovations using functional materials to construct nano- and microrobots of different shapes and sizes show substantial improvements in optimizing various food processes. Here we review the benefits of applying autonomous functional microrobotics to food science and technology, focusing on applications in food safety control, preservation and processing. We identify current limitations specific to each application and general constraints that must be overcome to transition from proof of concept to real-world implementation in the food industry.
Zobrazit více v PubMed
Wang, Y., Borgatta, J. & White, J. C. Protecting foods with biopolymer fibres. Nat. Food 3, 402–403 (2022). PubMed DOI
Snyder, A. B., Martin, N. & Wiedmann, M. Microbial food spoilage: impact, causative agents and control strategies. Nat. Rev. Microbiol. 22, 528–542 (2024). PubMed DOI
Sanders, T. A. B. Food production and food safety. BMJ 318, 1689–1693 (1999). PubMed DOI PMC
Camino Feltes, M. M., Arisseto-Bragotto, A. P. & Block, J. M. Food quality, food-borne diseases, and food safety in the Brazilian food industry. Food Qual. Saf. 1, 13–27 (2017). DOI
Smith, J. L. & Fratamico, P. M. Emerging and re-emerging foodborne pathogens. Foodborne Pathog. Dis. 15, 737–757 (2018). DOI
Bélanger, P., Tanguay, F., Hamel, M. & Phypers, M. An overview of foodborne outbreaks in Canada reported through Outbreak Summaries: 2008–2014. Can. Commun. Dis. Rep. 41, 254–262 (2015). PubMed DOI PMC
Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021). PubMed DOI
Sarno, E., Pezzutto, D., Rossi, M., Liebana, E. & Rizzi, V. A review of significant European foodborne outbreaks in the last decade. J. Food Prot. 84, 2059–2070 (2021). PubMed DOI
Beltran-Alcrudo, D., Falco, J. R., Raizman, E. & Dietze, K. Transboundary spread of pig diseases: the role of international trade and travel. BMC Vet. Res. 15, 64 (2019). PubMed DOI PMC
Vandeweyer, D., Lievens, B. & Campenhout, L. V. Identification of bacterial endospores and targeted detection of foodborne viruses in industrially reared insects for food. Nat. Food 1, 511–516 (2020). PubMed DOI
Villalonga, A., Sánchez, A., Mayol, B., Reviejo, J. & Villalonga, R. Electrochemical biosensors for food bioprocess monitoring. Curr. Opin. Food Sci. 43, 18–26 (2022). DOI
Nahar, S., Mizan, M. F. R., Ha, A. J.-W. & Ha, S.-D. Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Compr. Rev. Food Sci. Food Saf. 17, 1484–1502 (2018). PubMed DOI
Bhanja, A., Nanda, R. & Mishra, M. in Bio- and Nano-sensing Technologies for Food Processing and Packaging (ed. Shukla, A. K.) 181–198 (Royal Society of Chemistry, 2022); https://doi.org/10.1039/9781839167966
Peters, R. J. B. et al. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci. Technol. 54, 155–164 (2016). DOI
Dey, A., Pandey, G. & Rawtani, D. Functionalized nanomaterials driven antimicrobial food packaging: a technological advancement in food science. Food Control 131, 108469 (2022). DOI
Chen, H. et al. Nanomaterials as optical sensors for application in rapid detection of food contaminants, quality and authenticity. Sens. Actuators B 329, 129135 (2021). DOI
Mundaca-Uribe, R., Askarinam, N., Fang, R. H., Zhang, L. & Wang, J. Towards multifunctional robotic pills. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01090-6 (2023).
Nelson, B. J. & Pané, S. Delivering drugs with microrobots. Science 382, 1120–1122 (2023). PubMed DOI
Fernández-Medina, M., Ramos-Docampo, M. A., Hovorka, O., Salgueiriño, V. & Städler, B. Recent advances in nano- and microrobots. Adv. Funct. Mater. 30, 1908283 (2020). DOI
Allard, C. Adaptable navigation of magnetic microrobots. Nat. Rev. Mater. 9, 90 (2024). DOI
Hu, Y., Liu, W. & Sun, Y. Self-propelled micro-/nanorobots as ‘on-the-move' platforms: cleaners, sensors, and reactors. Adv. Funct. Mater. 32, 2109181 (2022). DOI
Wang, T., Wu, Y., Yildiz, E., Kanyas, S. & Sitti, M. Clinical translation of wireless soft robotic medical devices. Nat. Rev. Bioeng. 2, 470–485 (2024). DOI
Yuan, K., Jiang, Z., Jurado-Sánchez, B. & Escarpa, A. Nano/micro-robots for diagnosis and therapy of cancer and infectious diseases. Chem. Eur. J. 26, 2309–2326 (2020). PubMed DOI
Esteban-Fernández de Ávila, B. et al. Microrobots go in vivo: from test tubes to live animals. Adv. Funct. Mater. 28, 1705640 (2018). DOI
Urso, M., Ussia, M. & Pumera, M. Smart micro- and nanorobots for water purification. Nat. Rev. Bioeng. 1, 236–251 (2023). PubMed DOI PMC
Ge, H., Chen, X., Liu, W., Lu, X. & Gu, Z. Metal-based transient microrobots: from principle to environmental and biomedical applications. Chem. Asian J. 14, 2348–2356 (2019). PubMed DOI
Dan, J. et al. Micro/nanorobot technology: the new era for food safety control. Crit. Rev. Food Sci. Nutr. 64, 2032–2052 (2024). PubMed DOI
Wang, Q. & Zhang, L. External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano. 15, 149–174 (2021). PubMed DOI
Wang, H. & Pumera, M. Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chem. Soc. Rev. 49, 3211–3230 (2020). PubMed DOI
Singh, V. V., Kaufmann, K., de Ávila, B. E.-F., Karshalev, E. & Wang, J. Molybdenum disulfide-based tubular microengines: toward biomedical applications. Adv. Funct. Mater. 26, 6270–6278 (2016). DOI
Kim, J., Mayorga-Martinez, C. C. & Pumera, M. Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption. Nat. Commun. 14, 935 (2023). PubMed DOI PMC
Chen, C., Karshalev, E., Guan, J. & Wang, J. Magnesium-based micromotors: water-powered propulsion, multifunctionality, and biomedical and environmental applications. Small 14, 1704252 (2018). DOI
Zhou, H., Mayorga-Martinez, C. C., Pané, S., Zhang, L. & Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 121, 4999–5041 (2021). PubMed DOI PMC
Chen, X.-Z. et al. Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today 9, 37–48 (2017). DOI
Li, J. C. C., Mayorga-Martinez, C.-D., Ohl, M. & Pumera, M. Ultrasonically propelled micro- and nanorobots. Adv. Funct. Mater. 32, 2102265 (2022). DOI
Chen, C., Soto, F., Karshalev, E., Li, J. & Wang, J. Hybrid nanovehicles: one machine, two engines. Adv. Funct. Mater. 29, 1806290 (2018). DOI
Ussia, M. et al. Magnetically driven self-degrading zinc-containing cystine microrobots for treatment of prostate cancer. Small 19, 2208259 (2023). DOI
Song, S.-J. et al. Precisely navigated biobot swarms of bacteria Magnetospirillum magneticum for water decontamination. ACS Appl. Mater. Interfaces 15, 7023–7029 (2023). PubMed DOI PMC
Mayorga-Martinez, C. C., Fojtů, M., Vyskočil, J., Cho, N.-J. & Pumera, M. Pollen-based magnetic microrobots are mediated by electrostatic forces to attract, manipulate, and kill cancer cells. Adv. Funct. Mater. 32, 2207272 (2022). DOI
Kim, J. et al. Advanced materials for micro/nanorobotics. Chem. Soc. Rev. 53, 9190–9253 (2024). PubMed DOI
Ussia, M. & Pumera, M. Towards micromachine intelligence: potential of polymers. Chem. Soc. Rev. 51, 1558–1572 (2022). PubMed DOI
Yang, K., Won, S., Park, J. E., Jeon, J. & Wie, J. J. Magnetic swarm intelligence of mass-produced, programmable microrobot assemblies for versatile task execution. Device 3, 100626 (2025). DOI
Wang, J. Self-propelled affinity biosensors: moving the receptor around the sample. Biosens. Bioelectron. 76, 234–242 (2016). PubMed DOI
Dai, B. et al. Fluid field modulation in mass transfer for efficient photocatalysis. Adv. Sci. 9, 2203057 (2022). DOI
Xiong, K. et al. An axis-asymmetric self-driven microrobot that can perform precession multiplying ‘on-the-fly’ mass transfer. Matter 6, 907–924 (2023). DOI
Karshalev, E., Esteban-Fernández de Ávila, B. & Wang, J. Microrobots for ‘chemistry-on-the-fly’. J. Am. Chem. Soc. 140, 3810–3820 (2018). PubMed DOI
Rojas, D., Jurado-Sanchez, B. & Escarpa, A. ‘Shoot and sense’ Janus microrobots-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples. Anal. Chem. 88, 4153–4160 (2016). PubMed DOI
Kong, L., Guan, J. & Pumera, M. Micro- and nanorobots based sensing and biosensing. Curr. Opin. Electrochem. 10, 174–182 (2018). DOI
Luo, Y. et al. MnFe PubMed DOI
Toh, S. Y., Citartan, M., Gopinath, S. C. B. & Tang, T.-H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron. 64, 392–403 (2015). PubMed DOI
Esteban-Fernandez de Avila, B. et al. Aptamer-modified graphene-based catalytic microrobots: off−on fluorescent detection of ricin. ACS Sens. 1, 217–221 (2016). DOI
Molinero-Fernandez, A., Jodra, A., Moreno-Guzman, M., Lopez, M. A. & Escarpa, A. Magnetic reduced graphene oxide/nickel/platinum nanoparticles microrobots for mycotoxin analysis. Chem. Eur. J. 24, 7172–7176 (2018). PubMed DOI
Maria-Hormigos, R., Jurado-Sanchez, B. & Escarpa, A. Carbon allotrope nanomaterials based catalytic microrobots. Chem. Mater. 28, 8962–8970 (2016). DOI
Molinero-Fernandez, A., Moreno-Guzman, M., Lopez, M. A. & Escarpa, A. Biosensing strategy for simultaneous and accurate quantitative analysis of mycotoxins in food samples using unmodified graphene microrobots. Anal. Chem. 89, 10850–10857 (2017). PubMed DOI
Wen, J., Xu, Y., Li, H., Lu, A. & Sun, S. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem. Commun. 51, 11346–11358 (2015). DOI
Jurado-Sánchez, B., Pacheco, M., Rojo, J. & Escarpa, A. Magnetocatalytic graphene quantum dots Janus microrobots for bacterial endotoxin detection. Angew. Chem. Int. Ed. 56, 6957–6961 (2017). DOI
Pacheco, M., Jurado-Sánchez, B. & Escarpa, A. Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors. Anal. Chem. 90, 2912–2917 (2018). PubMed DOI
Su, W. & Ding, X. Methods of endotoxin detection. J. Lab. Autom. 20, 354–364 (2015). PubMed DOI
Sorbo, A. et al. Food safety assessment: overview of metrological issues and regulatory aspects in the European Union. Separations 9, 53 (2022). DOI
Romero-González, R. Food safety: how analytical chemists ensure it. Anal. Methods 7, 7193–7201 (2015). DOI
Singh, V. V. et al. Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chem. Commun. 51, 11190–111903 (2015). DOI
Zhang, Y. et al. Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of C. diff toxins. Sci. Adv. 5, eaau9650 (2019). PubMed DOI PMC
Yuan, K., López, M. Á, Jurado-Sánchez, B. & Escarpa, A. Janus micromotors coated with 2d nanomaterials as dynamic interfaces for (bio)-sensing. ACS Appl. Mater. Interfaces 12, 46588–46597 (2020). PubMed DOI
Mayorga-Martinez, C. C. & Pumera, M. Self-propelled tags for protein detection. Adv. Funct. Mater. 30, 1906449 (2020). DOI
Turgis, M., Vu, K. D., Dupont, C. & Lacroix, M. Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Res. Int. 48, 696–702 (2012). DOI
Heymich, M.-L. et al. Generation of antimicrobial peptides Leg1 and Leg2 from chickpea storage protein, active against food spoilage bacteria and foodborne pathogens. Food Chem. 347, 128917 (2021). PubMed DOI
Fidan, H. et al. Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria: facts and gaps. Food Biosci. 47, 101741 (2022). DOI
Yuan, K., Jurado-Sánchez, B. & Escarpa, A. Dual-propelled lanbiotic based Janus microrobots for selective inactivation of bacteria biofilms. Angew. Chem. Int. Ed. 60, 4915–4924 (2021). DOI
Mayorga-Martinez, C. C., Castoralova, M., Zelenka, J., Ruml, T. & Pumera, M. Swarming magnetic microrobots for pathogen isolation from milk. Small https://doi.org/10.1002/smll.202205047 (2023).
Sun, F., Yao, M., Su, H., Yang, Q. & Wu, W. A magnetic fluorescent spirochetes microrobot: dynamic monitoring and in situ sterilization of foodborne pathogens. Sens. Actuators B. 385, 133679 (2023). DOI
Villa, K., Vyskočil, J., Ying, Y., Zelenka, J. & Pumera, M. Microrobots in brewery: dual magnetic/light-powered hybrid microrobots for preventing microbial contamination in beer. Chem. Eur. J. 26, 3039–3043 (2020). PubMed DOI
Herrador, Z., Gherasim, A., López-Vélez, R. & Benito, A. Listeriosis in Spain based on hospitalisation records, 1997 to 2015: need for greater awareness. Eur. Surveill. 24, 1800271 (2019). DOI
Alonso, V. A. et al. Fungi and mycotoxins in silage: an overview. J. Appl. Microbiol. 115, 637–643 (2013). PubMed DOI
Suiker, I. M. & Wösten, H. A. B. Spoilage yeasts in beer and beer products. Curr. Opin. Food Sci. 44, 100815 (2022). DOI
Srivastava, S. K. & Schmidt, O. G. Autonomously propelled robots for value-added product synthesis and purification. Chem. Eur. J. 22, 9072–9076 (2016). PubMed DOI
Maria-Hormigos, R., Jurado-Sánchez, B. & Escarpa, A. Surfactant-free β-galactosidase microrobots for ‘on-the-move’ lactose hydrolysis. Adv. Funct. Mater. 28, 1704256 (2018). DOI
Mou, F. et al. Self-propelled microrobots driven by the magnesium–water reaction and their hemolytic properties. Angew. Chem. Int. Ed. 52, 7208–7212 (2013). DOI
Wu, M., Koizumi, Y., Nishiyama, H., Tomita, I. & Inagi, S. Buoyant force-induced continuous floating and sinking of Janus microrobots. RSC Adv. 8, 33331–33337 (2018). PubMed DOI PMC
Maria-Hormigos, R., Mayorga-Martinez, C. C., Kinčl, T. & Pumera, M. Nanostructured hybrid BioBots for beer brewing. ACS Nano 17, 7595–7603 (2023). PubMed DOI PMC
Dabbagh, S. R. et al. 3D-printed microrobots from design to translation. Nat. Commun. 13, 5875 (2022). PubMed DOI PMC
Sharan, P., Nsamela, A., Lesher-Pérez, S. C. & Simmchen, J. Microfluidics for microswimmers: engineering novel swimmers and constructing swimming lanes on the microscale, a tutorial review. Small 17, 2007403 (2021). DOI
Ju, X. et al. Technology roadmap of micro/nanorobots. ACS Nano https://doi.org/10.1021/acsnano.5c03911 (2025).
Abbasi, S. A., et al. Autonomous 3D positional control of a magnetic microrobot using reinforcement learning. Nat. Mach. Intell. 6, 92–105 (2024). DOI