Cardiovascular diseases (CVDs) are a group of disorders affecting the heart and blood vessels and a leading cause of death worldwide. Thus, there is a need to identify new cardiokines that may protect the heart from damage as reported in GBD 2017 Causes of Death Collaborators (2018) (The Lancet 392:1736-1788). Follistatin-like 1 (FSTL1) is a cardiokine that is highly expressed in the heart and released to the serum after cardiac injury where it is associated with CVD and predicts poor outcome. The action of FSTL1 likely depends not only on the tissue source but also post-translation modifications that are target tissue- and cell-specific. Animal studies examining the effect of FSTL1 in various models of heart disease have exploded over the past 15 years and primarily report a protective effect spanning from inhibiting inflammation via transforming growth factor, preventing remodeling and fibrosis to promoting angiogenesis and hypertrophy. A better understanding of FSTL1 and its homologs is needed to determine whether this protein could be a useful novel biomarker to predict poor outcome and death and whether it has therapeutic potential. The aim of this review is to provide a comprehensive description of the literature for this family of proteins in order to better understand their role in normal physiology and CVD.
- MeSH
- biologické markery MeSH
- fibróza MeSH
- folistatin MeSH
- kardiovaskulární nemoci * MeSH
- lidé MeSH
- proteiny související s folistatinem * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
N-methyl-D-aspartate receptors (NMDARs) belong to a family of ionotropic glutamate receptors that play essential roles in excitatory neurotransmission and synaptic plasticity in the mammalian central nervous system (CNS). Functional NMDARs consist of heterotetramers comprised of GluN1, GluN2A-D, and/or GluN3A-B subunits, each of which contains four membrane domains (M1 through M4), an intracellular C-terminal domain, a large extracellular N-terminal domain composed of the amino-terminal domain and the S1 segment of the ligand-binding domain (LBD), and an extracellular loop between M3 and M4, which contains the S2 segment of the LBD. Both the number and type of NMDARs expressed at the cell surface are regulated at several levels, including their translation and posttranslational maturation in the endoplasmic reticulum (ER), intracellular trafficking via the Golgi apparatus, lateral diffusion in the plasma membrane, and internalization and degradation. This review focuses on the roles played by the extracellular regions of GluN subunits in ER processing. Specifically, we discuss the presence of ER retention signals, the integrity of the LBD, and critical N-glycosylated sites and disulfide bridges within the NMDAR subunits, each of these steps must pass quality control in the ER in order to ensure that only correctly assembled NMDARs are released from the ER for subsequent processing and trafficking to the surface. Finally, we discuss the effect of pathogenic missense mutations within the extracellular domains of GluN subunits with respect to ER processing of NMDARs.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Follistatin-like 1 (FSTL1) is a secreted adipomyokine with a possible link to obesity; however, its connection to extreme obesity currently remains unknown. In order to analyze such association for the very first time, we employed a unique cohort of morbidly and super obese individuals with a mean BMI of 44.77 kg/m2 and measured the levels of circulating FSTL1. We explored the 3' UTR of FSTL1 to locate a genetic variant which impairs microRNA binding. We located and investigated such SNP (rs1057231) in relation to the FSTL1 protein level, obesity status, and other body composition parameters. We observed a significant decline in FSTL1 level in obese subjects in comparison to nonobese ones. The evaluated SNP was found to correlate with FSTL1 only in nonobese subjects. The presented results were not affected by sex since both males and females expressed FSTL1 equally. We suggest that the FSTL1 decrease observed in extremely obese subjects is a result of adipogenesis reduction accompanied by a senescence of preadipocytes which otherwise willingly express FSTL1, increased adipocyte apoptosis, and epigenetic FSTL1 silencing.
- MeSH
- 3' nepřekládaná oblast MeSH
- adipogeneze genetika MeSH
- běloši MeSH
- biologické markery krev MeSH
- dospělí MeSH
- down regulace MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA metabolismus MeSH
- mladiství MeSH
- morbidní obezita krev genetika MeSH
- obezita krev genetika MeSH
- proteiny související s folistatinem krev genetika MeSH
- senioři MeSH
- vazebná místa MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: The aim of the study was to compare selected extracellular miRNA levels (miR-16, miR-21, miR-93 and miR-222 with the response to 8-week-long explosive strength training (EXPL), hypertrophic strength training (HYP) and high-intensity interval training (HIIT). METHODS: 30 young male athletes of white European origin (mean age: 22.5 ± 4.06 years) recruited at the Faculty of Sports Studies of Masaryk University were enrolled in this study. The study participants were randomly assigned to three possible training scenarios: EXPL, HYP or HITT and participated in 8-week-long program in given arm. Blood plasma samples were collected at the baseline and at week 5 and 8 and anthropometric and physical activity parameters were measured. Pre- and post-intervention characteristics were compared and participants were further evaluated as responders (RES) or non-responders (NRES). RES/NRES status was established for the following characteristics: 300°/s right leg extension (t300), 60°/s right leg extension (t60), isometric extension (IE), vertical jump, isometric extension of the right leg and body fat percentage (BFP). RESULTS: No differences in miRNA levels were apparent between the intervention groups at baseline. No statistically significant prediction role was observed using crude univariate stepwise regression model analysis where RES/NRES status for t300, t60, IE, vertical jump and pFM was used as a dependent variable and miR-21, miR-222, miR-16 and miR-93 levels at baseline were used as independent variables. The baseline levels of miR-93 expressed an independent prediction role for responder status based on isometric extension of the right leg (beta estimate 0.76, 95% CI: -0.01; 1.53, p = 0.052). DISCUSSION: The results of the study indicate that 8-week-long explosive strength training, hypertrophic strength training and high-intensity interval training regimens are associated with significant changes in miR-16, mir-21, miR-222 and miR-93 levels compared to a baseline in athletic young men.
- MeSH
- cvičení * MeSH
- dospělí MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- mladý dospělý MeSH
- sporty * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH