The transient postnatal increase in circulating leptin levels, known as leptin surge, may increase later susceptibility to diet-induced obesity in rodents. However, the source of leptin during the surge needs to be better characterized, and the long-term effects of leptin are contradictory. Characterization of the interaction of leptin with the genetic background, sex, and other factors is required. Here, we focused on the impact of circulating leptin levels and several related variables, measured in 2- and 4-wk-old i) obesity-prone C57BL/6 (B6) and ii) obesity-resistant A/J mice. In total, 264 mice of both sexes were used. Posttranscriptionally controlled leptin secretion from subcutaneous white adipose tissue, the largest adipose tissue depot in mice pups, was the primary determinant of plasma leptin levels. When the animals were randomly assigned standard chow or high-fat diet (HFD) between 12 and 24 wk of age, the obesogenic effect of HFD feeding was observed in B6 but not A/J mice. Only leptin levels at 2 wk, i.e., close to the maximum in the postnatal leptin surge, correlated with both body weight (BW) trajectory throughout the life and adiposity of the 24-wk-old mice. Leptin surge explained 13 and 7% of the variance in BW and adiposity of B6 mice, and 9 and 35% of the variance in these parameters in A/J mice, with a minor role of sex. Our results prove the positive correlation between the leptin surge and adiposity in adulthood, reflecting the fundamental biological role of leptin. This role could be compromised in subjects with obesity.NEW & NOTEWORTHY The postnatal surge in circulating leptin levels in mice reflects particularly posttranscriptionally controlled release of this hormone from subcutaneous white adipose tissue. Leptinemia in 2-wk-old pups predicts both body weight and adiposity in adult mice fed a high-fat diet. The extent of these effects depends on genetically determined differences in propensity to obesity between C57BL/6 and A/J mice. The leptin effect on adiposity is compromised in the obesity-prone C57BL/6 mice.
- MeSH
- adipozita * MeSH
- bílá tuková tkáň metabolismus MeSH
- dieta s vysokým obsahem tuků * MeSH
- leptin * krev metabolismus MeSH
- myši inbrední C57BL * MeSH
- myši MeSH
- novorozená zvířata MeSH
- obezita * metabolismus MeSH
- tělesná hmotnost MeSH
- tuková tkáň metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Non-alcoholic fatty liver disease (NAFLD) can progress to more severe stages, such as steatohepatitis and fibrosis. Thermoneutral housing together with high-fat diet promoted NAFLD progression in C57BL/6J mice. Due to possible differences in steatohepatitis development between different C57BL/6 substrains, we examined how thermoneutrality affects NAFLD progression in C57BL/6N mice. METHODS: Male mice were fed standard or high-fat diet for 24 weeks and housed under standard (22°C) or thermoneutral (30°C) conditions. RESULTS: High-fat feeding promoted weight gain and hepatic steatosis, but the effect of thermoneutral environment was not evident. Liver expression of inflammatory markers was increased, with a modest and inconsistent effect of thermoneutral housing; however, histological scores of inflammation and fibrosis were generally low (<1.0), regardless of ambient temperature. In standard diet-fed mice, thermoneutrality increased weight gain, adiposity, and hepatic steatosis, accompanied by elevated de novo lipogenesis and changes in liver metabolome characterized by complex decreases in phospholipids and metabolites involved in urea cycle and oxidative stress defense. CONCLUSION: Thermoneutrality appears to promote NAFLD-associated phenotypes depending on the C57BL/6 substrain and/or the amount of dietary fat.
- MeSH
- bydlení MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- hmotnostní přírůstek MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nealkoholová steatóza jater * metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Metformin is currently the most prescribed drug for treatment of type 2 diabetes mellitus in humans. It has been well established that long-term treatment with metformin improves glucose tolerance in mice by inhibiting hepatic gluconeogenesis. Interestingly, a single dose of orally administered metformin acutely lowers blood glucose levels, however, little is known about the mechanism involved in this effect. Glucose tolerance, as assessed by the glucose tolerance test, was improved in response to prior oral metformin administration when compared to vehicle-treated mice, irrespective of whether the animals were fed either the standard or high-fat diet. Blood glucose-lowering effects of acutely administered metformin were also observed in mice lacking functional AMP-activated protein kinase, and were independent of glucagon-like-peptide-1 or N-methyl-D-aspartate receptors signaling. [18F]-FDG/PET revealed a slower intestinal transit of labeled glucose after metformin as compared to vehicle administration. Finally, metformin in a dose-dependent but indirect manner decreased glucose transport from the intestinal lumen into the blood, which was observed ex vivo as well as in vivo. Our results support the view that the inhibition of transepithelial glucose transport in the intestine is responsible for lowering blood glucose levels during an early response to oral administration of metformin.
- MeSH
- biologický transport účinky léků MeSH
- diabetes mellitus 2. typu farmakoterapie metabolismus MeSH
- glukosa metabolismus MeSH
- glukózový toleranční test MeSH
- hypoglykemika farmakologie terapeutické užití MeSH
- krevní glukóza metabolismus MeSH
- lidé MeSH
- metformin farmakologie terapeutické užití MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- proteinkinasy aktivované AMP metabolismus MeSH
- střevní sliznice účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Obesity is associated with insulin resistance and impaired glucose tolerance, which represent characteristic features of the metabolic syndrome. Development of obesity is also linked to changes in fatty acid and amino acid metabolism observed in animal models of obesity as well as in humans. The aim of this study was to explore whether plasma metabolome, namely the levels of various acylcarnitines and amino acids, could serve as a biomarker of propensity to obesity and impaired glucose metabolism. Taking advantage of a high phenotypic variation in diet-induced obesity in C57BL/6J mice, 12-week-old male and female mice (n = 155) were fed a high-fat diet (lipids ~32 wt%) for a period of 10 weeks, while body weight gain (BWG) and changes in insulin sensitivity (ΔHOMA-IR) were assessed. Plasma samples were collected before (week 4) and after (week 22) high-fat feeding. Both univariate and multivariate statistical analyses were then used to examine the relationships between plasma metabolome and selected phenotypes including BWG and ΔHOMA-IR. Partial least squares-discrimination analysis was able to distinguish between animals selected either for their low or high BWG (or ΔHOMA-IR) in male but not female mice. Among the metabolites that differentiated male mice with low and high BWG, and which also belonged to the major discriminating metabolites when analyzed in plasma collected before and after high-fat feeding, were amino acids Tyr and Orn, as well as acylcarnitines C16-DC and C18:1-OH. In general, the separation of groups selected for their low or high ΔHOMA-IR was less evident and the outcomes of a corresponding multivariate analysis were much weaker than in case of BWG. Thus, our results document that plasma acylcarnitines and amino acids could serve as a gender-specific complex biomarker of propensity to obesity, however with a limited predictive value in case of the associated impairment of insulin sensitivity.
- MeSH
- aminokyseliny krev MeSH
- analýza rozptylu MeSH
- biologické markery MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- fenotyp MeSH
- glukózový toleranční test MeSH
- inzulinová rezistence MeSH
- karnitin analogy a deriváty krev MeSH
- krevní glukóza MeSH
- metabolom MeSH
- metabolomika metody MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- obezita krev diagnóza etiologie MeSH
- porucha glukózové tolerance MeSH
- prognóza MeSH
- shluková analýza MeSH
- tendenční skóre MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Insulin resistance, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. This, in turn, contributes to a further damage of insulin signaling. Effectiveness of T2D treatment depends in large part on the improvement of insulin sensitivity and metabolic adaptability of the muscle, the main site of whole-body glucose utilization. We have shown previously in mice fed an obesogenic high-fat diet that a combined use of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and thiazolidinediones (TZDs), anti-diabetic drugs, preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether n-3 LC-PUFA could elicit additive beneficial effects on metabolic flexibility when combined with a TZD drug rosiglitazone. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various interventions: cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids (cHF+F), cHF with 10 mg rosiglitazone/kg diet (cHF+ROSI), cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combined intervention. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the interventions, with n-3 LC-PUFA supporting complete oxidation of fatty acids in mitochondria and the combination with n-3 LC-PUFA and rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combined use of n-3 LC-PUFA and TZDs could improve the efficacy of the therapy of obese and diabetic patients.
- MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- glykolýza účinky léků MeSH
- kosterní svalová vlákna účinky léků metabolismus MeSH
- kosterní svaly účinky léků metabolismus MeSH
- metabolomika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- obezita etiologie metabolismus MeSH
- omega-3 mastné kyseliny farmakologie MeSH
- oxidace-redukce účinky léků MeSH
- regulace genové exprese účinky léků MeSH
- synergismus léků MeSH
- thiazolidindiony farmakologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Farmaceutická edícia zv.8
1.vyd. 411 s. : il.,tab.