Daunomycin is a chemotherapeutic agent widely used for the treatment of leukemia, but its toxicity toward healthy dividing cells limits its clinical use and its production by fermentation. Herein, we describe the development of a specialized cultivation medium for daunomycin production, including a shift to oil rather than sugar as the primary carbon source. This achieved an almost threefold increase in daunomycin yields, reaching 5.5-6.0 g/L. Daunomycin produced in the oil-based medium was predominantly found in the solid sediment, whereas that produced in the sugar-based medium was mostly soluble. The oil-based medium thus induces an autonomous daunomycin-resistance mechanism involving biogenic nanoparticle formation. The characterization of the nanoparticles confirmed the incorporation of iron and daunomycin, indicating that this approach has the potential to mitigate cytotoxicity while improving yields. The presence of proteins associated with iron homeostasis and oxidative stress responses revealed the ability of the production strain to adapt to high iron concentrations. Our findings provide insight into the mechanisms of biogenic nanoparticle formation and the optimization of cultivation processes. Further investigation will help to refine microbial production systems for daunomycin and also broaden the application of similar strategies for the synthesis of other therapeutically important compounds.
- Publikační typ
- časopisecké články MeSH
Daunorubicin (DNR) is an anthracycline antibiotic originating from soil-dwelling actinobacteria extensively used to treat malignant tumors. Over the decades, extensive attempts were made to enhance the production of anthracyclines by introducing genetic modifications and mutations in combination with media optimization, but the target production levels remain comparatively low. Developing an appropriate culture medium to maximize the yield of DNR and preventing autotoxicity for the producing organism remains a challenge. Our prospective review sheds light on a method involving perturbation that enhances the precursors to regulate the type II PKS pathway, enhancing cells' capacity to increase secondary metabolite production. The suggested method also entails the preparation of culture media for the cultivation of Streptomyces sp. and enhanced yield of DNR, as well as making it inactive with iron or its reduced forms following efflux from the producer. The iron or iron-DNR complex is encapsulated by oleic acid or lipid micelle layers in the culture media, finally resulting in the generated inactive DNR and the DNR-iron-oil complex. This idea has the potential to protect the producer organism from autotoxicity and prevent the inhibition of metabolite production. The approach of substituting sugar with oil in culture media has a dual role wherein it promotes Streptomyces growth by utilizing lipids as an energy source and encapsulating the generated DNR-iron complex in the medium. In this review, we discussed aspects like anthracycline producers, biosynthesis pathways, and gene regulation; side effects of DNR; mechanisms for autotoxicity evasion; and culture media components for the enhancement of DNR production in Streptomyces sp. We anticipate that our work will help researchers working with secondary metabolites production and decipher a methodology that would enhance DNR yield and facilitate the extraction of the resulting DNR by lowering costs in large-scale fermentation.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Linseed represents a rich source of nutritional, functional and health-beneficial compounds. Nevertheless, the chemical composition and content of bioactive compounds may be quite variable and potentially affected by various factors, including genotype and the environment. In this study, the proximate chemical composition, lignans content and antioxidant potential of six experimentally grown linseed cultivars were assessed and compared. A diagonal cultivation trial in the University of South Bohemia Experimental Station in České Budějovice, Czech Republic, was established in three subsequent growing seasons (2018, 2019 and 2020). The results showed that the cultivar and growing conditions influenced most studied parameters. The lack of precipitation in May and June 2019 negatively affected the seed yield and the level of secoisolariciresinol diglucoside but did not decrease the crude protein content, which was negatively related to the oil content. The newly developed method for lignans analysis allowed the identification and quantification of secoisolariciresinol diglucoside and matairesinol. Their content correlated positively with the total polyphenol content and antioxidant assays (DPPH and ABTS radical scavenging activity), indicating the significant contribution to the biofunctional properties of linseed. On the other hand, we did not detect minor linseed lignans, pinoresinol and lariciresinol. The results of this study showed the importance of cultivar and growing conditions factors on the linseed chemical composition and the lignans content, determining its nutritional and medicinal properties.
The utilization of plant by-products as functional food ingredients has received increasing attention in the last decade. One such by-product generated during milk thistle oil pressing is oilseed cakes, which could be used as a novel food ingredient. Therefore, the study aimed at investigating the effects of the addition of milk thistle oilseed cake (MTOC) flour fractions obtained via dry sieving, differing in particle size (unsieved; coarse: >710 μm; medium: 315-710 μm; and fine: <315 μm), on the quality of gluten-free bread and stability of silymarin during breadmaking. The 10% addition of the fractions into gluten-free bread increased the protein, fibre, fat, ash and silymarin content. The breads with the coarse fraction had the highest content of fibre, whereas the breads with the fine fraction excelled in protein, fat and ash content. The medium fraction was characterized as the richest source of silymarin, whilst the fine fraction was the poorest. Silymarin constituents were slightly released during dough rising but also partially decomposed during baking; moreover, silydianin was the most susceptible and degraded the most. The enriched breads had better sensory and textural properties compared to the control bread. The results suggest that MTOC flour fractions can improve the potential health benefits and nutritional profile of gluten-free bread.
- Publikační typ
- časopisecké články MeSH
Oilseed cakes and meals are obtained as by-products after oil extraction. They contain 15–60 % proteins with a relatively good amino acid proportion and other valuable components such as dietary fibre, residual fat, polyphenols etc. Proteins are above all represented by globulins, especially 11-12S globulin, and albumins. Oilseed cakes are often used as feed for farm animals but they can be valorised in the form of flour and protein concentrate or by an isolation using dry or wet processes. In this work, a characterization of seed proteins of selected oilseed crops and methods of protein isolation are presented. Possibilities of oilseed protein products use in human nutrition and food products are evaluated.
Potato proteins are well known for their nutritional, emulsifying, foaming, gel forming or antioxidant properties that all make from them valuable protein source for food industry. Antifungal, antimicrobial and also antiviral properties, described for potato proteins in the review, enrich the possibilities of potato protein usage. Potato proteins were divided into patatin, protease inhibitors and fraction of other proteins that also included, besides others, proteins involved in potato defence physiology. All these proteins groups provide proteins and peptides with antifungal and/or antimicrobial actions. Patatins, obtained from cultivars with resistance to Phytophthora infestans, were able to inhibit spore germination of this pathogen. Protease inhibitors represent the structurally heterogeneous group with broad range of antifungal and antimicrobial activities. Potato protease inhibitors I and II reduced the growth of Phytophthora infestans, Rhizoctonia solani and Botrytis cinerea or of the fungi of Fusarium genus. Members of Kunitz family (proteins Potide-G, AFP-J, Potamin-1 or PG-2) were able to inhibit serious pathogens such as Staphylococcus aureus, Listeria monocytogenes, Escherichia coli or Candida albicans. Potato snakins, defensins and pseudothionins are discussed for their ability to inhibit serious potato fungi as well as bacterial pathogens. Potato proteins with the ability to inhibit growth of pathogens were used for developing of pathogen-resistant transgenic plants for crop improvement. Incorporation of potato antifungal and antimicrobial proteins in feed and food products or food packages for elimination of hygienically risk pathogens brings new possibility of potato protein usage.
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- antifungální látky chemie farmakologie MeSH
- Bacteria účinky léků MeSH
- Candida albicans účinky léků MeSH
- houby účinky léků MeSH
- karboxylesterhydrolasy chemie farmakologie MeSH
- Listeria monocytogenes účinky léků MeSH
- peptidy chemie farmakologie MeSH
- Phytophthora účinky léků MeSH
- průmyslové fungicidy chemie farmakologie MeSH
- rostlinné proteiny chemie farmakologie MeSH
- Solanum tuberosum chemie MeSH
- Staphylococcus aureus účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Proteins were obtained from effluent of a starch manufacture by using different isolation temperatures (40, 60, 80, and 100 °C). The proteins, remaining in effluent after treatment of potato juice at 80 and 100 °C differed significantly in composition and in structural stability as well as in trypsin inhibitory and antifungal activities in comparison with the variants of 40 and 60 °C. The protein samples of 80 °C exhibited the highest antifungal activity and its average value of IC50 against five strains of two Fusarium species was determined in average at 0.18 mg ml-1. The 80 °C protein samples consisted predominantly of low-molecular proteins (7-17 kDa) identified as potato tuber protease inhibitors I and II. Predominantly, protease inhibitors II were identified for the protein samples obtained by 100 °C and here we identified 7 spots in comparison with 12 identified for the 80 °C samples. Samples of 40 and 60 °C with low antifungal activities represent high variability of detected and identified proteins. We identified various representatives of aspartic, cysteine, and serine protease inhibitors in both types of samples. These samples also contained Kunitz-type protease inhibitors that were not found in the 80 and 100 °C samples which documented thermal unstableness of Kunitz-type protease inhibitors. Functional stability at high temperatures and antifungal activity of isolated potato protease inhibitors I and II support the potential of this fraction usage in food, feed, pharmaceutical, or agricultural industry and offer new products for starch manufactures. At the same time, utilization of the stable protein fraction of waste deproteinized potato water promotes exploitation of potato starch production resources.
- MeSH
- 2D gelová elektroforéza MeSH
- antifungální látky farmakologie MeSH
- Fusarium účinky léků MeSH
- hlízy rostlin chemie MeSH
- mikrobiální testy citlivosti MeSH
- proteomika MeSH
- rostlinné proteiny chemie izolace a purifikace farmakologie MeSH
- škrob MeSH
- Solanum tuberosum chemie MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- stabilita proteinů MeSH
- tandemová hmotnostní spektrometrie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
It is hypothesized that oligosaccharides are another potential source of immunological cross-reaction between different plant allergens. Patatin is the most abundant glycoprotein in potato and has been described to have an oligosaccharide of composition Man3(Xyl)GlcNAc2(Fuc). In this work, N-glycosylation profiles of patatin proteins isolated from tubers of different potato species were investigated and compared. Oligosaccharides were released by enzymatic digestion with PNAGase A and analyzed primarily by matrix-assisted laser desorption ionization mass spectrometry. For glycan labeling, a modified version of on-target derivatization with phenylhydrazine was applied. This study found the presence of glycan structures not described previously in patatins of potato tubers, and their glycan profiles significantly differed. This knowledge about the glycosylation of potato patatins may be helpful for correct choice of potato species to decrease the presence of specific glycan epitopes causing food allergy as well as for utilization of potatoes for the manufacture of therapeutic proteins.
- MeSH
- glukany chemie metabolismus MeSH
- glykosylace MeSH
- hlízy rostlin chemie klasifikace genetika metabolismus MeSH
- karboxylesterhydrolasy chemie genetika metabolismus MeSH
- rostlinné proteiny chemie genetika metabolismus MeSH
- Solanum chemie klasifikace genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Application of Tris-N-[Tris(hydroxymethyl)methyl]glycine gels for 2DE is hampered by formation of mixed CHAPS-SDS micelles resulting in typical swirling pattern in the low mass range, which makes reliable quantitative and qualitative gel evaluation impossible. Modification of 2DE strip equilibration procedure prevented the direct interaction between both detergents during equilibration process, thus substantially improving gel separation.
Biochemical characteristics of patatin proteins purified by ion-exchange and affinity chromatography from tubers of 20 potato cultivars were studied to evaluate their genotype differences with respect to utility groups, table potato cultivars (TPCs) and processing potato cultivars (PPCs). Both groups of cultivars showed similar values of protein content in dry matter (3.98-7.39%) and of patatin relative abundance (5.40-35.40%). Three mass levels (∼40.6, 41.8, and 42.9 kDa) of purified patatins were found by MALDI-TOF MS within all cultivars. Differences among mass levels corresponding with the mass of sugar antenna (∼1.2 kDa) confirmed the previous concept of different glycosylation extentsin patatin proteins. It was showed that the individual types of patatin varying in their masses occur in the patatin family in a ratio specific for each of the cultivars, with the lowest mass type being the major one. Electrophoretic analyses demonstrated wide cultivar variability in number of patatin forms. Especially 2D-PAGE showed 17-23 detected protein spots independently on the utility group. Specific lipid acyl hydrolase (LAH) activity of purified patatins from the individual tested cultivars varied between 0.92 and 5.46 μmol/(min mg). Patatin samples within most of the TPCs exhibited higher values of specific LAH activity than samples of PPCs. It may be supposed that individual patatin forms do not have similar physiological roles.
- MeSH
- druhová specificita MeSH
- glykosylace MeSH
- hlízy rostlin chemie MeSH
- karboxylesterhydrolasy chemie izolace a purifikace metabolismus MeSH
- molekulová hmotnost MeSH
- protein - isoformy chemie izolace a purifikace metabolismus MeSH
- rostlinné proteiny analýza chemie izolace a purifikace metabolismus MeSH
- Solanum tuberosum chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH