DNA methylation classifiers ("episignatures") help to determine the pathogenicity of variants of uncertain significance (VUS). However, their sensitivity is limited due to their training on unambiguous cases with strong-effect variants so that the classification of variants with reduced effect size or in mosaic state may fail. Moreover, episignature evaluation of mosaics as a function of their degree of mosaicism has not been developed so far. We improved episignatures with respect to three categories. Applying (i) minimum-redundancy-maximum-relevance feature selection we reduced their length by up to one order of magnitude without loss of accuracy. Performing (ii) repeated re-training of a support vector machine classifier by step-wise inclusion of cases in the training set that reached probability scores larger than 0.5, we increased the sensitivity of the episignature-classifiers by 30%. In the newly diagnosed patients we confirmed the association between DNA methylation aberration and age at onset of KMT2B-deficient dystonia. Moreover, we found evidence for allelic series, including KMT2B-variants with moderate effects and comparatively mild phenotypes such as late-onset focal dystonia. Retrained classifiers also can detect mosaics that previously remained below the 0.5-threshold, as we showed for KMT2D-associated Kabuki syndrome. Conversely, episignature-classifiers are able to revoke erroneous exome calls of mosaicism, as we demonstrated by (iii) comparing presumed mosaic cases with a distribution of artificial in silico-mosaics that represented all the possible variation in degree of mosaicism, variant read sampling and methylation analysis.
- MeSH
- alely MeSH
- fenotyp MeSH
- lidé MeSH
- metylace DNA * MeSH
- mnohočetné abnormality * genetika MeSH
- mozaicismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Sixteen subjects with biallelic WARS2 variants encoding the tryptophanyl mitochondrial aminoacyl-tRNA synthetase, presenting with a neonatal- or infantile-onset mitochondrial disease, have been reported to date. Here we present six novel cases with WARS2-related diseases and expand the spectrum to later onset phenotypes including dopa-responsive early-onset parkinsonism and progressive myoclonus-ataxia. METHODS: Six individuals from four families underwent whole-exome sequencing within research and diagnostic settings. Following the identification of a genetic defect, in-depth phenotyping and protein expression studies were performed. RESULTS: A relatively common (gnomAD MAF = 0.0033) pathogenic p.(Trp13Gly) missense variant in WARS2 was detected in trans in all six affected individuals in combination with different pathogenic alleles (exon 2 deletion in family 1; p.(Leu100del) in family 2; p.(Gly50Asp) in family 3; and p.(Glu208*) in family 4). Two subjects presented with action tremor around age 10-12 years and developed tremor-dominant parkinsonism with prominent neuropsychiatric features later in their 20s. Two subjects presented with a progressive myoclonus-ataxia dominant phenotype. One subject presented with spasticity, choreo-dystonia, myoclonus, and speech problems. One subject presented with speech problems, ataxia, and tremor. Western blotting analyses in patient-derived fibroblasts showed a markedly decreased expression of the full-length WARS2 protein in both subjects carrying p.(Trp13Gly) and an exon-2 deletion in compound heterozygosity. CONCLUSIONS: This study expands the spectrum of the disease to later onset phenotypes of early-onset tremor-dominant parkinsonism and progressive myoclonus-ataxia phenotypes.
- MeSH
- ataxie MeSH
- dihydroxyfenylalanin MeSH
- fenotyp MeSH
- lidé MeSH
- mutace MeSH
- myoklonus * MeSH
- parkinsonské poruchy * farmakoterapie genetika MeSH
- spinocerebelární degenerace * MeSH
- tremor MeSH
- tryptofan-tRNA-ligasa * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dystonia is a prevalent, heterogeneous movement disorder characterized by involuntarily abnormal postures. Biomarkers of dystonia are notoriously lacking. Here, a biomarker is reported for histone lysine methyltransferase (KMT2B)-deficient dystonia, a leading subtype among the individually rare monogenic dystonias. It was derived by applying a support vector machine to an episignature of 113 DNA CpG sites, which, in blood cells, showed significant epigenome-wide association with KMT2B deficiency and at least 1× log-fold change of methylation. This classifier was accurate both when tested on the general population and on samples with various other deficiencies of the epigenetic machinery, thus allowing for definitive evaluation of variants of uncertain significance and identifying patients who may profit from deep brain stimulation, a highly successful treatment in KMT2B-deficient dystonia. Methylation was increased in KMT2B deficiency at all 113 CpG sites. The coefficients of variation of the normalized methylation levels at these sites also perfectly classified the samples with KMT2B-deficient dystonia. Moreover, the mean of the normalized methylation levels correlated well with the age at onset of dystonia (P = 0.003)-being lower in samples with late or incomplete penetrance-thus serving as a predictor of disease onset and severity. Similarly, it may also function in monitoring the recently envisioned treatment of KMT2B deficiency by inhibition of DNA methylation.
OBJECTIVE: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.
- MeSH
- dystonie enzymologie genetika MeSH
- epilepsie genetika MeSH
- fenotyp MeSH
- genetická variace MeSH
- lidé MeSH
- missense mutace MeSH
- mitochondriální ADP/ATP-translokasy genetika MeSH
- mitochondriální nemoci enzymologie genetika MeSH
- mitochondriální protonové ATPasy genetika MeSH
- mitochondrie enzymologie genetika MeSH
- molekulární modely MeSH
- mutace MeSH
- nemoci nervového systému enzymologie genetika MeSH
- neurodegenerativní nemoci enzymologie genetika MeSH
- neurovývojové poruchy enzymologie genetika MeSH
- proteomika MeSH
- rodokmen MeSH
- sekvenování exomu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Despite the established value of genomic testing strategies, practice guidelines for their use do not exist in many indications. OBJECTIVES: We sought to validate a recently introduced scoring algorithm for dystonia, predicting the diagnostic utility of whole-exome sequencing (WES) based on individual phenotypic aspects (age-at-onset, body distribution, presenting comorbidity). METHODS: We prospectively enrolled a set of 209 dystonia-affected families and obtained summary scores (0-5 points) according to the algorithm. Singleton (N = 146), duo (N = 11), and trio (N = 52) WES data were generated to identify genetic diagnoses. RESULTS: Diagnostic yield was highest (51%) among individuals with a summary score of 5, corresponding to a manifestation of early-onset segmental or generalized dystonia with coexisting non-movement disorder-related neurological symptoms. Sensitivity and specificity at the previously suggested threshold for implementation of WES (3 points) was 96% and 52%, with area under the curve of 0.81. CONCLUSIONS: The algorithm is a useful predictive tool and could be integrated into dystonia routine diagnostic protocols. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
- MeSH
- algoritmy MeSH
- dystonické poruchy * genetika MeSH
- dystonie * diagnóza genetika MeSH
- genetické testování MeSH
- lidé MeSH
- Parkinsonova nemoc * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Up to 40% of neurodevelopmental disorders (NDDs) such as intellectual disability, developmental delay, autism spectrum disorder, and developmental motor abnormalities have a documented underlying monogenic defect, primarily due to de novo variants. Still, the overall burden of de novo variants as well as novel disease genes in NDDs await discovery. We performed parent-offspring trio exome sequencing in 231 individuals with NDDs. Phenotypes were compiled using human phenotype ontology terms. The overall diagnostic yield was 49.8% (n = 115/231) with de novo variants contributing to more than 80% (n = 93/115) of all solved cases. De novo variants affected 72 different-mostly constrained-genes. In addition, we identified putative pathogenic variants in 16 genes not linked to NDDs to date. Reanalysis performed in 80 initially unsolved cases revealed a definitive diagnosis in two additional cases. Our study consolidates the contribution and genetic heterogeneity of de novo variants in NDDs highlighting trio exome sequencing as effective diagnostic tool for NDDs. Besides, we illustrate the potential of a trio-approach for candidate gene discovery and the power of systematic reanalysis of unsolved cases.
- MeSH
- centra terciární péče MeSH
- dítě MeSH
- dospělí MeSH
- exom genetika MeSH
- fenotyp MeSH
- genetická predispozice k nemoci genetika MeSH
- genetická variace genetika MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- neurovývojové poruchy genetika MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- retrospektivní studie MeSH
- sekvenování exomu metody MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: The gene encoding myelin-associated glycoprotein (MAG) has been implicated in autosomal-recessive spastic paraplegia type 75. To date, only four families with biallelic missense variants in MAG have been reported. The genotypic and phenotypic spectrum of MAG-associated disease awaits further elucidation. METHODS: Four unrelated patients with complex neurologic conditions underwent whole-exome sequencing within research or diagnostic settings. Following determination of the underlying genetic defects, in-depth phenotyping and literature review were performed. RESULTS: In all case subjects, we detected ultra-rare homozygous or compound heterozygous variants in MAG. The observed nonsense (c.693C > A [p.Tyr231*], c.980G > A [p.Trp327*], c.1126C > T [p.Gln376*], and 1522C > T [p.Arg508*]) and frameshift (c.517_521dupAGCTG [p.Trp174*]) alleles were predicted to result in premature termination of protein translation. Affected patients presented with variable combinations of psychomotor delay, ataxia, eye movement abnormalities, spasticity, dystonia, and neuropathic symptoms. Cerebellar signs, nystagmus, and pyramidal tract dysfunction emerged as unifying features in the majority of MAG-mutated individuals identified to date. CONCLUSIONS: Our study is the first to describe biallelic null variants in MAG, confirming that loss of myelin-associated glycoprotein causes severe infancy-onset disease with central and peripheral nervous system involvement.
- MeSH
- atrofie optického nervu genetika MeSH
- cerebelární ataxie genetika MeSH
- dítě MeSH
- dospělí MeSH
- dystonické poruchy genetika MeSH
- dystonie genetika MeSH
- genotyp MeSH
- glykoprotein asociovaný s myelinem genetika MeSH
- lidé MeSH
- mentální retardace genetika MeSH
- mutace genetika MeSH
- předškolní dítě MeSH
- rodokmen MeSH
- spastická paraplegie dědičná genetika MeSH
- spinocerebelární ataxie genetika MeSH
- svalová spasticita genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Dystonia is a clinically and genetically heterogeneous condition that occurs in isolation (isolated dystonia), in combination with other movement disorders (combined dystonia), or in the context of multisymptomatic phenotypes (isolated or combined dystonia with other neurological involvement). However, our understanding of its aetiology is still incomplete. We aimed to elucidate the monogenic causes for the major clinical categories of dystonia. METHODS: For this exome-wide sequencing study, study participants were identified at 33 movement-disorder and neuropaediatric specialty centres in Austria, Czech Republic, France, Germany, Poland, Slovakia, and Switzerland. Each individual with dystonia was diagnosed in accordance with the dystonia consensus definition. Index cases were eligible for this study if they had no previous genetic diagnosis and no indication of an acquired cause of their illness. The second criterion was not applied to a subset of participants with a working clinical diagnosis of dystonic cerebral palsy. Genomic DNA was extracted from blood of participants and whole-exome sequenced. To find causative variants in known disorder-associated genes, all variants were filtered, and unreported variants were classified according to American College of Medical Genetics and Genomics guidelines. All considered variants were reviewed in expert round-table sessions to validate their clinical significance. Variants that survived filtering and interpretation procedures were defined as diagnostic variants. In the cases that went undiagnosed, candidate dystonia-causing genes were prioritised in a stepwise workflow. FINDINGS: We sequenced the exomes of 764 individuals with dystonia and 346 healthy parents who were recruited between June 1, 2015, and July 31, 2019. We identified causative or probable causative variants in 135 (19%) of 728 families, involving 78 distinct monogenic disorders. We observed a larger proportion of individuals with diagnostic variants in those with dystonia (either isolated or combined) with coexisting non-movement disorder-related neurological symptoms (100 [45%] of 222; excepting cases with evidence of perinatal brain injury) than in those with combined (19 [19%] of 98) or isolated (16 [4%] of 388) dystonia. Across all categories of dystonia, 104 (65%) of the 160 detected variants affected genes which are associated with neurodevelopmental disorders. We found diagnostic variants in 11 genes not previously linked to dystonia, and propose a predictive clinical score that could guide the implementation of exome sequencing in routine diagnostics. In cases without perinatal sentinel events, genomic alterations contributed substantively to the diagnosis of dystonic cerebral palsy. In 15 families, we delineated 12 candidate genes. These include IMPDH2, encoding a key purine biosynthetic enzyme, for which robust evidence existed for its involvement in a neurodevelopmental disorder with dystonia. We identified six variants in IMPDH2, collected from four independent cohorts, that were predicted to be deleterious de-novo variants and expected to result in deregulation of purine metabolism. INTERPRETATION: In this study, we have determined the role of monogenic variants across the range of dystonic disorders, providing guidance for the introduction of personalised care strategies and fostering follow-up pathophysiological explorations. FUNDING: Else Kröner-Fresenius-Stiftung, Technische Universität München, Helmholtz Zentrum München, Medizinische Universität Innsbruck, Charles University in Prague, Czech Ministry of Education, the Slovak Grant and Development Agency, the Slovak Research and Grant Agency.
- MeSH
- dítě MeSH
- dystonie diagnóza epidemiologie genetika MeSH
- exom genetika MeSH
- genetická variace genetika MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- rodokmen MeSH
- sekvenování exomu metody MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH