BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.
- MeSH
- celogenomová asociační studie MeSH
- depresivní porucha unipolární * genetika MeSH
- duševní poruchy * genetika MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- pokus o sebevraždu MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.
- MeSH
- alely MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci genetika MeSH
- genomika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- schizofrenie * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. AIMS: To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. METHOD: Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. RESULTS: Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = -0.34 years, s.e. = 0.08), major depression (β = -0.34 years, s.e. = 0.08), schizophrenia (β = -0.39 years, s.e. = 0.08), and educational attainment (β = -0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. CONCLUSIONS: AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
- MeSH
- bipolární porucha * diagnóza epidemiologie genetika MeSH
- celogenomová asociační studie MeSH
- depresivní porucha unipolární * genetika MeSH
- lidé MeSH
- multifaktoriální dědičnost MeSH
- poruchy autistického spektra * MeSH
- věk při počátku nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.
- MeSH
- bipolární porucha genetika MeSH
- celogenomová asociační studie * MeSH
- fenotyp MeSH
- genetická predispozice k nemoci MeSH
- genom lidský MeSH
- hlavní histokompatibilní komplex genetika MeSH
- lidé MeSH
- lidské chromozomy genetika MeSH
- lokus kvantitativního znaku genetika MeSH
- multifaktoriální dědičnost genetika MeSH
- rizikové faktory MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Research Support, N.I.H., Extramural MeSH
Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [rg ], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from ~2400 to ~537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (rg = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (rg = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (rg = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (rgs = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
- MeSH
- alkoholismus genetika MeSH
- celogenomová asociační studie MeSH
- depresivní porucha unipolární genetika MeSH
- fenotyp MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- poruchy příjmu potravy genetika MeSH
- poruchy spojené s užíváním psychoaktivních látek genetika MeSH
- poruchy vyvolané užíváním tabáku genetika MeSH
- rizikové faktory MeSH
- schizofrenie genetika MeSH
- vazebná nerovnováha MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness1, affecting 0.9-4% of women and 0.3% of men2-4, with twin-based heritability estimates of 50-60%5. Mortality rates are higher than those in other psychiatric disorders6, and outcomes are unacceptably poor7. Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)8,9 and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes.
- MeSH
- celogenomová asociační studie * MeSH
- dospělí MeSH
- duševní poruchy komplikace genetika MeSH
- fenotyp MeSH
- genetická predispozice k nemoci * MeSH
- genomika metody MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- lokus kvantitativního znaku * MeSH
- mentální anorexie etiologie genetika patologie MeSH
- metabolické nemoci komplikace genetika MeSH
- prognóza MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.
- MeSH
- bipolární porucha klasifikace genetika MeSH
- celogenomová asociační studie MeSH
- depresivní porucha unipolární genetika MeSH
- genetická predispozice k nemoci MeSH
- genetické lokusy * MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- psychotické poruchy genetika MeSH
- schizofrenie genetika MeSH
- studie případů a kontrol MeSH
- systémová biologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
Major depressive disorder (MDD) is a heritable disease with a heavy personal and socio-economic burden. Antidepressants of different classes are prescribed to treat MDD, but reliable and reproducible markers of efficacy are not available for clinical use. Further complicating treatment, the diagnosis of MDD is not guided by objective criteria, resulting in the risk of under- or overtreatment. A number of markers of MDD and antidepressant response have been investigated at the genetic, epigenetic, gene expression and protein levels. Polymorphisms in genes involved in antidepressant metabolism (cytochrome P450 isoenzymes), antidepressant transport (ABCB1), glucocorticoid signalling (FKBP5) and serotonin neurotransmission (SLC6A4 and HTR2A) were among those included in the first pharmacogenetic assays that have been tested for clinical applicability. The results of these investigations were encouraging when examining patient-outcome improvement. Furthermore, a nine-serum biomarker panel (including BDNF, cortisol and soluble TNF-α receptor type II) showed good sensitivity and specificity in differentiating between MDD and healthy controls. These first diagnostic and response-predictive tests for MDD provided a source of optimism for future clinical applications. However, such findings should be considered very carefully because their benefit/cost ratio and clinical indications were not clearly demonstrated. Future tests may include combinations of different types of biomarkers and be specific for MDD subtypes or pathological dimensions.
- MeSH
- antidepresiva terapeutické užití MeSH
- depresivní porucha unipolární farmakoterapie genetika MeSH
- epigeneze genetická * MeSH
- genetické markery * MeSH
- konsensus MeSH
- lidé MeSH
- neuroplasticita MeSH
- randomizované kontrolované studie jako téma MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
OBJECTIVES: Schizophrenia is a severe psychiatric disease affecting about 1% of the general population. The relative contribution of genetic factors has been estimated to be up to 80%. The mode of inheritance is complex, non-Mendelian, and in most cases involving the combined action of large numbers of genes. METHODS: This review summarises recent efforts to identify genetic variants associated with schizophrenia detected, e.g., through genome-wide association studies, studies on copy-number variants or next-generation sequencing. RESULTS: A large, new body of evidence on genetics of schizophrenia has accumulated over recent years. Many new robustly associated genetic loci have been detected. Furthermore, there is consensus that at least a dozen microdeletions and microduplications contribute to the disease. Genetic overlap between schizophrenia, other psychiatric disorders, and neurodevelopmental syndromes raised new questions regarding the current classification of psychiatric and neurodevelopmental diseases. CONCLUSIONS: Future studies will address especially the functional characterisation of genetic variants. This will hopefully open the doors to our understanding of the pathophysiology of schizophrenia and other related diseases. Complementary, integrated systems biology approaches to genomics, transcriptomics, proteomics and metabolomics may also play crucial roles in enabling a precision medicine approach to the treatment of individual patients.
- MeSH
- konsensus * MeSH
- lidé MeSH
- schizofrenie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH