The current density (J) is a parameter routinely used to characterize individual ionic membrane currents. Its evaluation is based on the presumption that the magnitude of whole-cell ionic membrane current (I) is directly proportional to the cell membrane capacitance (C), i.e. I positively and strongly correlates with C and the regression line describing I-C relation intersects the y-axis close to the origin of coordinates. We aimed to prove the presumption in several examples and find whether the conversion of I to J could be always beneficial. I-C relation was analysed in several potassium currents, measured in rat atrial myocytes (in inward rectifier currents, IK1, and both the constitutively active and acetylcholine-induced components of acetylcholine-sensitive current, IK(Ach)CONST and IK(Ach)ACH), and in rat ventricular myocytes (transient outward current Ito). I-C correlation was estimated by the Pearson coefficient (r). A coefficient (k) was newly suggested describing deviation of the regression intercept from zero in currents with considerable r value. Based on mathematical simulations, I was satisfactorily proportional to C when r ≥ 0.6 and k ≤ 0.2 which was fulfilled in IK1 and IK(Ach)ACH (r = 0.84, k = 0.20, and r = 0.61, k = 0.06, respectively). I-C correlation was significantly positive, but weak in IK(Ach)CONST (r = 0.42), and virtually missing in Ito (r = 0.04). The impaired I-C proportionality in IK(Ach)CONST and Ito likely reflects heterogeneity of the channel expression. We conclude that the conversion of I to J should be avoided when I-C proportionality is absent. Otherwise, serious misinterpretation of data may arise.
- MeSH
- acetylcholin chemie MeSH
- buněčná membrána fyziologie MeSH
- elektrická kapacitance MeSH
- elektrofyziologie MeSH
- genotyp MeSH
- ionty MeSH
- kardiomyocyty účinky léků MeSH
- krysa rodu rattus MeSH
- membránové potenciály účinky léků MeSH
- myokard MeSH
- potkani Wistar MeSH
- srdeční síně patologie MeSH
- svalové buňky cytologie MeSH
- teoretické modely MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The distribution of data presented in many electrophysiological studies is presumed to be normal without any convincing evidence. To test this presumption, the cell membrane capacitance and magnitude of inward rectifier potassium currents were recorded by the whole-cell patch clamp technique in rat atrial myocytes. Statistical analysis of the data showed that these variables were not distributed normally. Instead, a positively skewed distribution appeared to be a better approximation of the real data distribution. Consequently, the arithmetic mean, used inappropriately in such data, may substantially overestimate the true mean value characterizing the central tendency of the data. Moreover, a large standard deviation describing the variance of positively skewed data allowed 95% confidence interval to include unrealistic negative values. We therefore conclude that the normality of the electrophysiological data should be tested in every experiment and, if rejected, the positively skewed data should be more accurately characterized by the median and interpercentile range or, if justified (namely in the case of log-normal and gamma data distribution), by the geometric mean and the geometric standard deviation.
- MeSH
- algoritmy MeSH
- buněčná membrána patologie fyziologie MeSH
- elektrická kapacitance MeSH
- elektrody MeSH
- elektrofyziologie metody MeSH
- interpretace statistických dat MeSH
- krysa rodu rattus MeSH
- membránové potenciály MeSH
- normální rozdělení * MeSH
- potkani Wistar MeSH
- reprodukovatelnost výsledků MeSH
- srdeční síně patologie MeSH
- svalové buňky fyziologie MeSH
- teoretické modely MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach), a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.
- MeSH
- acetylcholin farmakologie MeSH
- časové faktory MeSH
- dovnitř usměrňující draslíkové kanály spřažené s G proteiny agonisté účinky léků MeSH
- ethanol toxicita MeSH
- hodnocení rizik MeSH
- kardiomyocyty účinky léků metabolismus MeSH
- membránové potenciály MeSH
- nikotin toxicita MeSH
- potkani Wistar MeSH
- srdeční arytmie chemicky indukované metabolismus MeSH
- srdeční síně účinky léků metabolismus MeSH
- techniky in vitro MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Atrial fibrillation is the most common arrhythmia at alcohol consumption. Its pathogenesis is complex, at least partly related to changes of cardiac inward rectifier potassium currents including IK1. Both ethanol and acetaldehyde have been demonstrated to considerably modify IK1 in rat ventricular myocytes. However, analogical data on the atrial IK1 are lacking. The present study aimed to analyse IK1 changes induced by ethanol and acetyldehyde in atrial myocytes. The experiments were performed by the whole cell patch-clamp technique at 23 ± 1°C on enzymatically isolated rat and guinea-pig atrial myocytes as well as on expressed human Kir2.3 channels. Ethanol (8 - 80 mM) caused a dual effect on the atrial IK1 showing the steady-state activation in some cells but inhibition in others in agreement with the ventricular data; on average, the activation was observed (at 20 mM by 4.3 and 4.5% in rat and guinea-pig atrial myocytes, respectively). The effect slightly increased with depolarization above -60 mV. In contrast, the current through human Kir2.3 channels (prevailing atrial IK1 subunit) was inhibited in all measured cells. Unlike ethanol, acetaldehyde (3 μM) markedly inhibited the rat atrial IK1 (by 15.1%) in a voltage-independent manner, comparably to the rat ventricular IK1. The concurrent application of ethanol (20 mM) and acetaldehyde (3 μM) resulted in the steady-state IK1 activation by 2.1% on average. We conclude that ethanol and even more acetaldehyde affected IK1 at clinically relevant concentrations if applied separately. Their combined effect did not significantly differ from the effect of ethanol alone.
- MeSH
- acetaldehyd farmakologie MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- draslíkové kanály dovnitř usměrňující genetika fyziologie MeSH
- ethanol farmakologie MeSH
- kardiomyocyty účinky léků fyziologie MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- lékové interakce MeSH
- lidé MeSH
- morčata MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- morčata MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Alcohol intoxication tends to induce arrhythmias, most often the atrial fibrillation. To elucidate arrhythmogenic mechanisms related to alcohol consumption, the effect of ethanol on main components of the ionic membrane current is investigated step by step. Considering limited knowledge, we aimed to examine the effect of clinically relevant concentrations of ethanol (0.8-80 mM) on acetylcholine-sensitive inward rectifier potassium current I K(Ach). Experiments were performed by the whole-cell patch clamp technique at 23 ± 1 °C on isolated rat and guinea-pig atrial myocytes, and on expressed human Kir3.1/3.4 channels. Ethanol induced changes of I K(Ach) in the whole range of concentrations applied; the effect was not voltage dependent. The constitutively active component of I K(Ach) was significantly increased by ethanol with the maximum effect (an increase by ∼100 %) between 8 and 20 mM. The changes were comparable in rat and guinea-pig atrial myocytes and also in expressed human Kir3.1/3.4 channels (i.e., structural correlate of I K(Ach)). In the case of the acetylcholine-induced component of I K(Ach), a dual ethanol effect was apparent with a striking heterogeneity of changes in individual cells. The effect correlated with the current magnitude in control: the current was increased by eth-anol in the cells showing small current in control and vice versa. The average effect peaked at 20 mM ethanol (an increase of the current by ∼20 %). Observed changes of action potential duration agreed well with the voltage clamp data. Ethanol significantly affected both components of I K(Ach) even in concentrations corresponding to light alcohol consumption.
- MeSH
- acetylcholin farmakologie MeSH
- akční potenciály MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- dovnitř usměrňující draslíkové kanály spřažené s G proteiny účinky léků genetika metabolismus MeSH
- ethanol toxicita MeSH
- hodnocení rizik MeSH
- kardiomyocyty účinky léků metabolismus MeSH
- kinetika MeSH
- lidé MeSH
- modely kardiovaskulární MeSH
- morčata MeSH
- počítačová simulace MeSH
- potkani Wistar MeSH
- srdeční arytmie chemicky indukované metabolismus patofyziologie MeSH
- srdeční frekvence účinky léků MeSH
- srdeční síně účinky léků metabolismus patofyziologie MeSH
- transfekce MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- morčata MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Considering the effects of alcohol on cardiac electrical behavior as well as the important role of the inward rectifier potassium current I(K1) in arrhythmogenesis, this study was aimed at the effect of acetaldehyde, the primary metabolite of ethanol, on I(K1) in rat ventricular myocytes. Acetaldehyde induced a reversible inhibition of I(K1) with IC(50) = 53.7+/-7.7 microM at -110 mV; a significant inhibition was documented even at clinically-relevant concentrations (at 3 microM by 13.1+/-3.0 %). The inhibition was voltage-independent at physiological voltages above -90 mV. The I(K1) changes under acetaldehyde may contribute to alcohol-induced alterations of cardiac electrophysiology, especially in individuals with a genetic defect of aldehyde dehydrogenase where the acetaldehyde level may be elevated.
- MeSH
- acetaldehyd farmakologie MeSH
- draslíkové kanály dovnitř usměrňující antagonisté a inhibitory metabolismus MeSH
- kardiomyocyty účinky léků metabolismus MeSH
- metoda terčíkového zámku MeSH
- otrava alkoholem metabolismus MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Alcohol consumption may result in electrocardiographic changes and arrhythmias. Important role of modifications of the inward rectifier potassium current I(K1) in arrhythmogenesis is well established. Considering lack of relevant data, we aimed at studying the effect of 0.2-200 mM ethanol on I(K1) in enzymatically isolated rat right ventricular myocytes using the whole cell patch-clamp technique at 23±1°C. Ethanol reversibly affected I(K1) in a dual way. At a very low concentration of 0.8 mM (≈~0.004%), ethanol significantly decreased IK1 by 6.9±2.7%. However, at concentrations of ethanol ≥20 mM (≈0.09%), I(K1) was conversely significantly increased (by 16.6±4.0% at 20 mM and 24.5±2.4% at 80 mM). The steady-state I(K1) increase was regularly preceded by its transient decrease at the beginning of ethanol application. Under 2 and 8 mM ethanol, I(K1) was decreased at the steady-state in some cells but increased in others. Both effects were voltage-independent. In agreement with the observed effects of ethanol on I(K1), a transient action potential (AP) prolongation followed by its final shortening were observed after the application of ethanol in a low concentration of 8 mM (≈0.04%). Under the effect of 0.8 mM ethanol, only AP prolongation was apparent which agreed well with the above described I(K1) decrease. Other AP characteristics remained unaltered in both concentrations. These observations corresponded with the results of mathematical simulations in a model of the rat ventricular myocyte. To summarize, changes of the cardiac I(K1) under ethanol at concentrations relevant to the current alcohol consumption were first demonstrated in ventricular myocytes in this study. The observed dual ethanol effect suggests at least two underlying mechanisms that remain to be clarified. The ethanol-induced I(K1) changes might contribute to the reported alterations of cardiac electrophysiology related to alcohol consumption.
- MeSH
- akční potenciály účinky léků MeSH
- draslíkové kanály dovnitř usměrňující fyziologie MeSH
- ethanol farmakologie MeSH
- kardiomyocyty účinky léků fyziologie MeSH
- potkani Wistar MeSH
- srdeční komory cytologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH
AIM: Even though alcohol intoxication is often linked to arrhythmias, data describing ethanol effect on cardiac ionic channels are rare. In addition, ethanol is used as a solvent of hydrophobic compounds in experimental studies. We investigated changes of the action potential (AP) configuration and main ionic membrane currents in rat cardiomyocytes under 20-1500 m(M) ethanol. Methods: Experiments were performed on enzymatically isolated rat right ventricular myocytes using the whole cell patch-clamp technique at room temperature. Results: Ethanol reversibly decelerated the upstroke velocity and decreased AP amplitude and duration at 0.2 and 3 Hz. The fast sodium current I(Na) , l-type calcium current I(Ca) and transient outward potassium current I(to) were reversibly inhibited in a concentration-dependent manner (50% inhibition at 446 ± 12, 553 ± 49 and 1954 ± 234 m(M), respectively, with corresponding Hill coefficients 3.1 ± 0.3, 1.1 ± 0.2 and 0.9 ± 0.1). Suppression of I(Na) and I(Ca) magnitude was slightly voltage dependent. The effect on I(Ca) and I(to) was manifested mainly as an acceleration of their apparent inactivations with a decreased slow and fast time constant respectively. As a consequence of marked differences in n(H) , sensitivity of the currents to ethanol at 10% inhibition decreases in the following order: I(Ca) (75 mm, 3.5‰), I(to) (170 m(M), 7.8‰) and I(Na) (220 m(M), 10.1‰). Conclusion: Our results suggest a slight inhibition of all the currents at ethanol concentrations relevant to deep alcohol intoxication. The concentration dependence measured over a wide range may serve as a guideline when using ethanol as a solvent.
- MeSH
- akční potenciály účinky léků MeSH
- draslík metabolismus MeSH
- ethanol farmakologie MeSH
- gating iontového kanálu účinky léků MeSH
- iontové kanály metabolismus MeSH
- kardiomyocyty cytologie účinky léků MeSH
- krysa rodu rattus MeSH
- látky tlumící činnost CNS farmakologie MeSH
- membránové potenciály účinky léků MeSH
- metoda terčíkového zámku MeSH
- potkani Wistar MeSH
- rozpouštědla MeSH
- sodík metabolismus MeSH
- srdeční komory cytologie MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Antipsychotic drug perphenazine belongs to the phenothiazine group commonly reported to induce ECG changes and tachyarrhythmias. Data about its effect on ionic membrane currents in cardiomyocytes are missing. We analyzed the effect of perphenazine (0.1-100 microM) on fast sodium current I (Na) and transient outward potassium current I (to) in enzymatically isolated rat right ventricular myocytes by the whole-cell patch-clamp technique at room temperature. Perphenazine reversibly blocked I (Na) (reducing its amplitude; IC(50) = 1.24 +/- 0.10 microM) and I (to) (accelerating its apparent inactivation with a slight decrease of its amplitude; IC(50) = 38.2 +/- 3.5 microM, evaluated from changes of the time integral). The fast time constant of I (to) inactivation was significantly decreased in a concentration-dependent manner (IC(50) = 30.0 +/- 6.6 microM). Both blocks were use and frequency dependent at 3.3 Hz. We conclude that perphenazine causes concentration-, use-, and frequency-dependent block of I (Na) and I (to) . Computer simulations suggest that perphenazine interacts preferentially with I (Na) channels in inactivated states and with I (to) channels in both open and open-inactivated states.
- MeSH
- antipsychotika aplikace a dávkování toxicita MeSH
- draslíkové kanály metabolismus účinky léků MeSH
- inhibiční koncentrace 50 MeSH
- kardiomyocyty metabolismus účinky léků MeSH
- krysa rodu rattus MeSH
- metoda terčíkového zámku MeSH
- perfenazin aplikace a dávkování toxicita MeSH
- počítačová simulace MeSH
- potkani Wistar MeSH
- sodíkové kanály metabolismus MeSH
- srdeční komory cytologie účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH