Complex II (CII) activity controls phenomena that require crosstalk between metabolism and signaling, including neurodegeneration, cancer metabolism, immune activation, and ischemia-reperfusion injury. CII activity can be regulated at the level of assembly, a process that leverages metastable assembly intermediates. The nature of these intermediates and how CII subunits transfer between metastable complexes remains unclear. In this work, we identify metastable species containing the SDHA subunit and its assembly factors, and we assign a preferred temporal sequence of appearance of these species during CII assembly. Structures of two species show that the assembly factors undergo disordered-to-ordered transitions without the appearance of significant secondary structure. The findings identify that intrinsically disordered regions are critical in regulating CII assembly, an observation that has implications for the control of assembly in other biomolecular complexes.
- MeSH
- katalytická doména * MeSH
- sekundární struktura proteinů MeSH
- Publikační typ
- časopisecké články MeSH
Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.
- MeSH
- energetický metabolismus MeSH
- fylogeneze MeSH
- mitochondrie * metabolismus MeSH
- nádory * genetika metabolismus MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
- práce podpořená grantem MeSH
Gamete fusion is a critical event of mammalian fertilization. A random one-bead one-compound combinatorial peptide library represented synthetic human egg mimics and identified a previously unidentified ligand as Fc receptor-like 3, named MAIA after the mythological goddess intertwined with JUNO. This immunoglobulin super family receptor was expressed on human oolemma and played a major role during sperm-egg adhesion and fusion. MAIA forms a highly stable interaction with the known IZUMO1/JUNO sperm-egg complex, permitting specific gamete fusion. The complexity of the MAIA isotype may offer a cryptic sexual selection mechanism to avoid genetic incompatibility and achieve favorable fitness outcomes.
- Publikační typ
- časopisecké články MeSH
Mitochondria are organelles essential for tumor cell proliferation and metastasis. Although their main cellular function, generation of energy in the form of ATP is dispensable for cancer cells, their capability to drive their adaptation to stress originating from tumor microenvironment makes them a plausible therapeutic target. Recent research has revealed that cancer cells with damaged oxidative phosphorylation import healthy (functional) mitochondria from surrounding stromal cells to drive pyrimidine synthesis and cell proliferation. Furthermore, it has been shown that energetically competent mitochondria are fundamental for tumor cell migration, invasion and metastasis. The spatial positioning and transport of mitochondria involves Miro proteins from a subfamily of small GTPases, localized in outer mitochondrial membrane. Miro proteins are involved in the structure of the MICOS complex, connecting outer and inner-mitochondrial membrane; in mitochondria-ER communication; Ca2+ metabolism; and in the recycling of damaged organelles via mitophagy. The most important role of Miro is regulation of mitochondrial movement and distribution within (and between) cells, acting as an adaptor linking organelles to cytoskeleton-associated motor proteins. In this review, we discuss the function of Miro proteins in various modes of intercellular mitochondrial transfer, emphasizing the structure and dynamics of tunneling nanotubes, the most common transfer modality. We summarize the evidence for and propose possible roles of Miro proteins in nanotube-mediated transfer as well as in cancer cell migration and metastasis, both processes being tightly connected to cytoskeleton-driven mitochondrial movement and positioning.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Pheochromocytoma and paraganglioma (PPGL) are neuroendocrine tumors with frequent mutations in genes linked to the tricarboxylic acid cycle. However, no pathogenic variant has been found to date in succinyl-CoA ligase (SUCL), an enzyme that provides substrate for succinate dehydrogenase (SDH; mitochondrial complex II [CII]), a known tumor suppressor in PPGL. METHODS: A cohort of 352 patients with apparently sporadic PPGL underwent genetic testing using a panel of 54 genes developed at the National Institutes of Health, including the SUCLG2 subunit of SUCL. Gene deletion, succinate levels, and protein levels were assessed in tumors where possible. To confirm the possible mechanism, we used a progenitor cell line, hPheo1, derived from a human pheochromocytoma, and ablated and re-expressed SUCLG2. RESULTS: We describe 8 germline variants in the guanosine triphosphate-binding domain of SUCLG2 in 15 patients (15 of 352, 4.3%) with apparently sporadic PPGL. Analysis of SUCLG2-mutated tumors and SUCLG2-deficient hPheo1 cells revealed absence of SUCLG2 protein, decrease in the level of the SDHB subunit of SDH, and faulty assembly of the complex II, resulting in aberrant respiration and elevated succinate accumulation. CONCLUSIONS: Our study suggests SUCLG2 as a novel candidate gene in the genetic landscape of PPGL. Large-scale sequencing may uncover additional cases harboring SUCLG2 variants and provide more detailed information about their prevalence and penetrance.
- MeSH
- feochromocytom * genetika patologie MeSH
- lidé MeSH
- nádory nadledvin * genetika patologie MeSH
- paragangliom * genetika patologie MeSH
- sukcinátdehydrogenasa genetika metabolismus MeSH
- zárodečné mutace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
Mitochondria are organelles present in most eukaryotic cells, where they play major and multifaceted roles. The classical notion of the main mitochondrial function as the powerhouse of the cell per se has been complemented by recent discoveries pointing to mitochondria as organelles affecting a number of other auxiliary processes. They go beyond the classical energy provision via acting as a relay point of many catabolic and anabolic processes, to signaling pathways critically affecting cell growth by their implication in de novo pyrimidine synthesis. These additional roles further underscore the importance of mitochondrial homeostasis in various tissues, where its deregulation promotes a number of pathologies. While it has long been known that mitochondria can move within a cell to sites where they are needed, recent research has uncovered that mitochondria can also move between cells. While this intriguing field of research is only emerging, it is clear that mobilization of mitochondria requires a complex apparatus that critically involves mitochondrial proteins of the Miro family, whose role goes beyond the mitochondrial transfer, as will be covered in this review.
- MeSH
- aktivní transport fyziologie MeSH
- lidé MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- pyrimidiny biosyntéza MeSH
- rho proteiny vázající GTP genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Pancreatic cancer is one of the deadliest forms of cancer, which is attributed to lack of effective treatment options and drug resistance. Mitochondrial inhibitors have emerged as a promising class of anticancer drugs, and several inhibitors of the electron transport chain (ETC) are being clinically evaluated. We hypothesized that resistance to ETC inhibitors from the biguanide class could be induced by inactivation of SMAD4, an important tumor suppressor involved in transforming growth factor β (TGFβ) signaling, and associated with altered mitochondrial activity. Here we show that, paradoxically, both TGFβ-treatment and the loss of SMAD4, a downstream member of TGFβ signaling cascade, induce resistance to biguanides, decrease mitochondrial respiration, and fragment the mitochondrial network. Mechanistically, the resistance of SMAD4-deficient cells is mediated by increased mitophagic flux driven by MAPK/ERK signaling, whereas TGFβ-induced resistance is autophagy-independent and linked to epithelial-to-mesenchymal transition (EMT). Interestingly, mitochondria-targeted tamoxifen, a complex I inhibitor under clinical trial, overcomes resistance mediated by SMAD4-deficiency or TGFβ signaling. Our data point to differential mechanisms underlying the resistance to treatment in PDAC arising from TGFβ signaling and SMAD4 loss, respectively. The findings will help the development of mitochondria-targeted therapy for pancreatic cancer patients with SMAD4 as a plausible predictive marker.
- MeSH
- lidé MeSH
- mitofagie MeSH
- nádory slinivky břišní genetika metabolismus patologie MeSH
- protein Smad4 metabolismus MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Intracellular trafficking of organelles, driven by kinesin-1 stepping along microtubules, underpins essential cellular processes. In absence of other proteins on the microtubule surface, kinesin-1 performs micron-long runs. Under crowding conditions, however, kinesin-1 motility is drastically impeded. It is thus unclear how kinesin-1 acts as an efficient transporter in intracellular environments. Here, we demonstrate that TRAK1 (Milton), an adaptor protein essential for mitochondrial trafficking, activates kinesin-1 and increases robustness of kinesin-1 stepping on crowded microtubule surfaces. Interaction with TRAK1 i) facilitates kinesin-1 navigation around obstacles, ii) increases the probability of kinesin-1 passing through cohesive islands of tau and iii) increases the run length of kinesin-1 in cell lysate. We explain the enhanced motility by the observed direct interaction of TRAK1 with microtubules, providing an additional anchor for the kinesin-1-TRAK1 complex. Furthermore, TRAK1 enables mitochondrial transport in vitro. We propose adaptor-mediated tethering as a mechanism regulating kinesin-1 motility in various cellular environments.
- MeSH
- adaptorové proteiny vezikulární transportní genetika izolace a purifikace metabolismus MeSH
- fluorescenční mikroskopie MeSH
- kineziny genetika izolace a purifikace metabolismus MeSH
- luminescentní proteiny genetika metabolismus MeSH
- mikrotubuly metabolismus MeSH
- mitochondrie metabolismus MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- proteiny tau genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- vnitřně neuspořádané proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.
- MeSH
- buněčné dýchání MeSH
- lidé MeSH
- mitochondriální DNA metabolismus MeSH
- mitochondrie metabolismus MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory metabolismus MeSH
- oxidativní fosforylace MeSH
- oxidoreduktasy působící na CH-CH vazby fyziologie MeSH
- pyrimidiny metabolismus MeSH
- ubichinon metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
PURPOSE: Mantle cell lymphoma (MCL) is an aggressive subtype of B-cell non-Hodgkin lymphomas characterized by (over)expression of BCL2. A BCL2-targeting drug, venetoclax, has promising anticancer activity in MCL. We analyzed molecular mechanisms of venetoclax resistance in MCL cells and tested strategies to overcome it. EXPERIMENTAL DESIGN: We confirmed key roles of proapoptotic proteins BIM and NOXA in mediating venetoclax-induced cell death in MCL. Both BIM and NOXA are, however, differentially expressed in cell lines compared with primary cells. First, NOXA protein is significantly overexpressed in most MCL cell lines. Second, deletions of BIM gene harbored by three commonly used MCL cell lines (JEKO-1, MINO, and Z138) were not found by array comparative genomic hybridization using a validation set of 24 primary MCL samples. RESULTS: We demonstrated that MCL1 and NOXA play important roles in mediating resistance to venetoclax. Consequently, we tested an experimental treatment strategy based on cotargeting BCL2 with venetoclax and MCL1 with a highly specific small-molecule MCL1 inhibitor S63845. The combination of venetoclax and S63845 demonstrated synthetic lethality in vivo on a panel of five patient-derived xenografts established from patients with relapsed MCL with adverse cytogenetics. CONCLUSIONS: Our data strongly support investigation of venetoclax in combination with S63845 as an innovative treatment strategy for chemoresistant MCL patients with adverse cytogenetics in the clinical grounds.
- MeSH
- antitumorózní látky farmakologie MeSH
- bicyklické sloučeniny heterocyklické farmakologie MeSH
- chemorezistence MeSH
- lidé MeSH
- lokální recidiva nádoru farmakoterapie metabolismus patologie MeSH
- lymfom z plášťových buněk farmakoterapie metabolismus patologie MeSH
- myši inbrední NOD MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- protein MCL-1 antagonisté a inhibitory metabolismus MeSH
- protoonkogenní proteiny c-bcl-2 antagonisté a inhibitory metabolismus MeSH
- pyrimidiny farmakologie MeSH
- sulfonamidy farmakologie MeSH
- synergismus léků * MeSH
- thiofeny farmakologie MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH