Bolesť je závažný subjektívny vnem, ktorý hoci má ochranný charakter, pacienta nielen fyzicky, ale aj psychicky vyčerpáva. Farmakologická oblasť vývoja a výskumu liečby a odstraňovania bolesti je od izolovania kyseliny salicylovej stále dynamická a zaujímavá. Po objavení molekulárnej podstaty cyklooxygenázy a jej inhibície sa výskum nasmeroval na selektívne inhibítory COX-2, ktoré však boli veľkým sklamaním. Dnes sa opäť objavuje možnosť ako kombináciou liečiv prispieť pacientovi k bezpečnej a účinnej analgeticko-antiflogistickej liečbe.
Pain is a serious subjective experience, which, although it has a protective nature, it physically and mentally exhausts the patient. The pharmacological field of development and research in the treatment and relief of pain has been dynamic and interesting ever since the isolation of salicylic acid. After discovering the molecular nature of cyclooxygenase and its inhibition, research focused on selective COX-2 inhibitors, but they were a big disappointment. Today, the possibility of contributing to safe and effective analgesic-antiphlogistic treatment for the patient with a combination of drugs is emerging again.
- MeSH
- Anti-Inflammatory Agents, Non-Steroidal pharmacology adverse effects therapeutic use MeSH
- Cyclooxygenase 2 Inhibitors * pharmacology adverse effects therapeutic use MeSH
- Cardiotoxicity MeSH
- Humans MeSH
- Pain Management MeSH
- Drug-Related Side Effects and Adverse Reactions MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
Autologous stem cell therapy is the most promising alternative treatment in patients with chronic ischemic diseases, including ischemic heart disease and critical limb ischemia, which are characterized by poor prognosis related to serious impair of quality of life, high risk of cardiovascular events and mortality rates. However, one of the most serious shortcomings of stem cell transplantation are low survival after transplantation to the site of injury, as large number of stem cells are lost within 24 hours after delivery. Multiple studies suggest that combination of lipid-lowering drugs, statins, and stem cell transplantation might improve therapeutic efficacy in regenerative medicine. Statins are inhibitors of HMG-CoA reductase and belong to recommended therapy in all patients suffering from critical limb ischemia. Statins possess non-lipid effects which involve improvement of endothelial function, decrease of vascular inflammation and oxidative stress, anti-cancer and stem cell modulation capacities. These non-lipid effects are explained by inhibition of mevalonate synthesis via blocking isoprenoid intermediates synthesis, such as farnesylpyrophospate and geranylgeranylpyrophospate and result in modulation of the PI3K/Akt pathway. Moreover, statin-mediated microRNA regulation may contribute to the pleiotropic functions. MicroRNA interplay in gene regulatory network of IGF/Akt pathway may be of special significance for the treatment of critical limb ischemia. We assume further studies are needed for detailed analysis of statin interactions with microRNA at the molecular level and their link to PI3K/Akt and IGF/Akt pathway in stem cells, which are currently the most promising treatment strategy used in chronic ischemic diseases.
- MeSH
- Atorvastatin * pharmacology therapeutic use MeSH
- Chronic Limb-Threatening Ischemia * drug therapy therapy MeSH
- Phosphatidylinositol 3-Kinases * metabolism MeSH
- Ischemia * drug therapy therapy MeSH
- Extremities * blood supply MeSH
- Quality of Life MeSH
- Humans MeSH
- Hydroxymethylglutaryl-CoA Reductase Inhibitors * pharmacology therapeutic use MeSH
- Stem Cell Transplantation * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Sarcopenia is defined as an age-associated loss of skeletal muscle function and muscle mass and is common in older adults. Sarcopenia as a disease is currently of interest not only to orthopedists and surgeons but also to internists, endocrinologists, rheumatologists, cardiologists, diabetologists, gynaecologists, geriatricians and paediatricians. In cooperation with the 5th Internal Medicine Clinic, we, as a unit of clinical research, aimed to describe a sarcopenic specific miRNA expression profile for disease diagnostics and classification of the severity of muscle performance deterioration. This study included a total of 80 patients (age 55-86 years) hospitalized at the V. Internal medicine clinic of LFUK and UNB with different severity of muscle performance deterioration. The study participants were evaluated and classified according to short physical performance battery score (SPPB). In this study, we investigated the role of circulating miRNAs in sarcopenia in the elderly. We hypothesized that sarcopenia effects the expression of muscle tissue-specific miRNAs (MyomiRNAs), which could be potentially reflected in the blood plasma miRNA expression profile. The expression of specific circulating miRNAs in patients with different muscle performances was analyzed. Patients' blood plasma was evaluated for the expression of myomiRNAs: miRNA-29a, miRNA-29b, miRNA-1, miRNA-133a, miRNA-133b, miRNA-206, miRNA-208b and miRNA-499, and the data were correlated with diagnostic indicators of the disease. We showed a specific sarcopenia miRNA profile that could be considered a possible biomarker for the disease. Patients with low muscle performance showed increased miRNA-1, miRNA-29a and miRNA-29b expression and decreased for the miRNA-206, miRNA-133a, miRNA-133b, miRNA-208b and miRNA-499 expression. We show that the severity of muscle performance deterioration in sarcopenia correlates with specific miRNA expression. We also propose the profile of miRNAs expression in blood plasma as a specific biomarker for sarcopenia diagnostics. Future clinical studies will be necessary to eventually naturally have to elucidate the underlined molecular mechanism responsible for specific miRNAs expression in sarcopenia pathology and progression of the disease.
- MeSH
- Biomarkers blood MeSH
- Physical Examination MeSH
- Muscle, Skeletal physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- MicroRNAs blood MeSH
- Sarcopenia blood physiopathology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
Hospitalized patients in internal medicine have an increased risk of low physical reserve which further declines during the hospital stay. The diagnosis requires bed-side testing of functional domains or more complex investigations of the muscle mass. Clinically useful biomarkers of functional status are needed, thus we aimed to explore the potential of microRNAs. Among hospitalized patients, we recorded the basic demographics, anthropometrics, nutritional status, and physical function domains: hand-grip strength (HGS, abnormal values M<30 kg, W<20 kg), balance (<30 s), chair-stands speed (CHSS<0.5/s) and gait speed (GS<0.8 m/s). A panel of five micro-RNAs (miRNA 1, miRNA 133a, miRNA 133b, miRNA 29a, miRNA 29b) and basic blood biochemistry and vitamin D values were recorded. We enrolled 80 patients (M40, W40), with a mean age of 68.8±8.4 years. Obesity was observed in 27.5 % and 30 %, low HGS and low CHSS in 65.0, 77.5 %, and 80, 90 % of men and women respectively. The median hospital stay was 6.5 days. MiRNA29a and miRNA29b have the strongest correlation with the triceps skinfold (miRNA 29b, r=0.377, p=0.0006) and CHSS (miRNA 29a, r=0.262, p=0.02). MiRNA 29a, miRNA 29b and 133a levels were significantly higher in patients with CHSS<0.5/s. Other anthropometric parameters, mobility domains, or vitamin D did not correlate. All miRNAs except of miRNA 1, could predict low CHSS (miRNA29b, AUROC=0.736 CI 0.56-0.91, p=0.01), particularly in patients with low HGS (miRNA 29b, AUROC=0.928 CI 0.83-0.98). Among hospitalized patients in internal medicine, low functional status was frequent. MicroRNAs were fair biomarkers of the antigravity domain, but not other domains. Larger studies with clinical endpoints are needed.
- MeSH
- Biomarkers blood MeSH
- Adult MeSH
- Physical Examination statistics & numerical data MeSH
- Inpatients statistics & numerical data MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- MicroRNAs blood MeSH
- Aged MeSH
- Physical Fitness physiology MeSH
- Internal Medicine MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Experimental data concerning the bioavailability of the different Mg-salts in human organism is inconsistent. Mg-absorption reported by clinical studies largely varies depending on the method used for evaluation. The aim of this study was to evaluate the bioavailability and accessibility of magnesium bound in different Mg-salt compounds, using an in vitro model of intestinal cell barrier. The study included a variety of inorganic (oxide, sulphate, chloride, carbonate) and organic salts (lactate, citrate, pidolate). Caco-2 cells were cultivated in a complete culture medium with different magnesium salts treatments in ascending concentrations. The viability and quantity of cells was analysed by FACS. Mg-absorption was analysed by a direct colorimetric assay, measured by spectrometry. T-test identified a significant decrease in cell count treatment with mg-lactate compared with citrate. Mg-pidolate showed a significantly higher cell viability compared with Mg-citrate, Mg-lactate and Mg-chloride. Even though the difference was not significant, we showed that an increase in Mg2+ salt concentration progressively decreased the cell count and the viability and the effect was universal for all the used Mg-salt treatments. Mg-citrate, chloride, and sulphate showed a significantly lower absorption compared to Mg-carbonate, pidolate and oxide. Our in vitro monolayer model of human intestinal transport showed that viability and quantity of cell decreased with increasing Mg-concentration. We admit that our experiment model may have some limitations in accurately describing an in vivo Mg2+ absorption. Moreover, it is also necessary to assess the relevance of our data in vivo and especially in clinical practice.
- MeSH
- Caco-2 Cells MeSH
- Magnesium metabolism MeSH
- Humans MeSH
- Intestinal Mucosa metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Heart remodeling occurs as a compensation mechanism for the massive loss of tissue during initial heart failure and the consequent inflammation process. During heart remodeling fibroblasts differentiate to myofibroblasts activate their secretion functions and produce elevated amounts, of extracellular matrix (ECM) proteins, mostly collagen, that form scar tissue and alter the normal degradation of ECM. Scar formation does replace the damaged tissue structurally; however, it impedes the normal contractive function of cardiomyocytes (CMs) and results in long-lasting effects after heart failure. Besides CMs and cardiac fibroblasts, endothelial cells (ECs) and circulating endothelial progenitor cells (cEPCs) contribute to heart repair. This review summarizes the current knowledge of EC-CM crosstalk in cardiac fibrosis (CF), the role of cEPCs in heart regeneration and the contribution of Endothelial-mesenchymal transition (EndoMT).
- MeSH
- Endothelial Cells physiology MeSH
- Endothelial Progenitor Cells physiology MeSH
- Receptor Cross-Talk MeSH
- Myocytes, Cardiac physiology MeSH
- Humans MeSH
- Regeneration * MeSH
- Ventricular Remodeling * MeSH
- Heart physiology MeSH
- Cell Transdifferentiation * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH