Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films. For this purpose, undoped and boron-doped NCD films were deposited on low roughness (LR) and high roughness (HR) substrates, which were studied in vitro by means of protein adsorption and fibroblast growth assays. Our results show that BNCD films significantly reduce the adsorption of serum proteins, mostly on the LR substrates. As compared to fibroblasts cultured on LR BNCD films, cells grown on the HR BNCD films showed significantly reduced adhesion and lower growth rates. The mean length of fibronectin fibrils deposited by the cells was significantly increased in the BNCD coated substrates, mainly in the LR surfaces. Overall, the largest influence on protein adsorption, cell adhesion, proliferation, and fibronectin deposition was due to the underlying sub-micron topography, with little or no influence of boron doping. In perspective, BNCD films displaying surface roughness in the submicron range may be used as a strategy to reduce the fibroblast growth on the surface of neural electrodes.
- MeSH
- 4-aminopyridin analogy a deriváty metabolismus MeSH
- aktiny fyziologie MeSH
- bor chemie MeSH
- buněčná adheze fyziologie MeSH
- diamant chemie MeSH
- fibroblasty fyziologie MeSH
- krevní proteiny chemie MeSH
- kultivované buňky MeSH
- lidé MeSH
- membrány umělé MeSH
- nanočástice * MeSH
- povrchové vlastnosti MeSH
- proliferace buněk MeSH
- testování materiálů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time.
- Publikační typ
- časopisecké články MeSH
- MeSH
- buněčná imunita MeSH
- filtrace MeSH
- herpes zoster farmakoterapie imunologie MeSH
- imunologické testy MeSH
- leukocyty MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- srovnávací studie MeSH
- MeSH
- leukocyty krev MeSH
- lidé MeSH
- lymfatické nemoci krev MeSH
- onkogenní viry izolace a purifikace MeSH
- protilátky virové MeSH
- syndromy imunologické nedostatečnosti krev MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- MeSH
- buněčná imunita MeSH
- filtrace MeSH
- herpes zoster farmakoterapie imunologie MeSH
- imunologické testy MeSH
- leukocyty MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- srovnávací studie MeSH
- MeSH
- leukocyty krev MeSH
- lidé MeSH
- lymfatické nemoci krev MeSH
- onkogenní viry izolace a purifikace MeSH
- protilátky virové MeSH
- syndromy imunologické nedostatečnosti krev MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH