The serine proteases, tissue- and urokinase-type plasminogen activators (PLAT and PLAU) and their inhibitors SERPINE1/2 are regulators of plasminogen to plasmin conversion. They are widely expressed in ovarian tissues, including granulosa and cumulus cells, and their expression is regulated by gonadotropins. The aim of this work was to assess the effect of serine protease inhibitors (aprotinin and AEBSF) and SERPINE1/2 on FSH-induced cumulus cell expansion, the production of prostaglandin E2 (PGE2) and retention of hyaluronic acid (HA) in expanding cumulus. The serine protease activity proved to be essential for the production of PGE2 and also for the retention of HA; the inhibition of plasminogen activators by SERPINE1/2 had the same effect. Collectively, these data indicate that plasmin is required for proper function of expanding cumulus cells in vitro and presumably also in vivo in the pre-ovulatory follicles.
- MeSH
- aprotinin farmakologie MeSH
- dinoproston metabolismus MeSH
- folikuly stimulující hormon farmakologie MeSH
- inhibitor aktivátoru plazminogenu 1 farmakologie MeSH
- inhibitory serinových proteinas farmakologie MeSH
- kumulární buňky cytologie účinky léků metabolismus MeSH
- kyselina hyaluronová metabolismus MeSH
- oocyty cytologie účinky léků metabolismus MeSH
- prasata MeSH
- serpin E2 farmakologie MeSH
- sulfony farmakologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The maturation of mammalian oocytes in vitro can be stimulated by gonadotropins (follicle-stimulating hormone, FSH) or their intrafollicular mediator, epidermal growth factor (EGF)-like peptide-amphiregulin (AREG). We have shown previously that in pig cumulus-oocyte complexes (COCs), FSH induces expression and the synthesis of AREG that binds to EGF receptor (EGFR) and activates the mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathway. However, in this study we found that FSH also caused a rapid activation of MAPK3/1 in the cumulus cells, which cannot be explained by the de novo synthesis of AREG. The rapid MAPK3/1 activation required EGFR tyrosine kinase (TK) activity, was sensitive to SRC proto-oncogene non-receptor tyrosine kinase (SRC)-family and protein kinase C (PKC) inhibitors, and was resistant to inhibitors of protein kinase A (PKA) and metalloproteinases. AREG also induced the rapid activation of MAPK3/1 in cumulus cells, but this activation was only dependent on the EGFR TK activity. We conclude that in cumulus cells, FSH induces a rapid activation of MAPK3/1 by the ligand-independent transactivation of EGFR, requiring SRC and PKC activities. This rapid activation of MAPK3/1 precedes the second mechanism participating in the generation and maintenance of active MAPK3/1-the ligand-dependent activation of EGFR depending on the synthesis of EGF-like peptides.
- MeSH
- aktivace transkripce MeSH
- amfiregulin metabolismus MeSH
- erbB receptory metabolismus MeSH
- extracelulárním signálem regulované MAP kinasy genetika MeSH
- folikuly stimulující hormon farmakologie MeSH
- IVM techniky MeSH
- kultivované buňky MeSH
- kumulární buňky cytologie účinky léků metabolismus MeSH
- mitogenem aktivovaná proteinkinasa 1 genetika MeSH
- mitogenem aktivovaná proteinkinasa 3 genetika MeSH
- oocyty cytologie účinky léků metabolismus MeSH
- prasata MeSH
- signální transdukce účinky léků MeSH
- skupina kinas odvozených od src-genu metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Fertilization of the mammalian oocyte requires interactions between spermatozoa and expanded cumulus extracellular matrix (ECM) that surrounds the oocyte. This review focuses on key molecules that play an important role in the formation of the cumulus ECM, generated by the oocyte-cumulus complex. In particular, the specific inhibitors (AG1478, lapatinib, indomethacin and MG132) and progesterone receptor antagonist (RU486) exerting their effects through the remodeling of the ECM of the cumulus cells surrounding the oocyte have been described. After gonadotropin stimulus, cumulus cells expand and form hyaluronan (HA)-rich cumulus ECM. In pigs, the proper structure of the cumulus ECM depends on the interaction between HA and serum-derived proteins of the inter-alpha-trypsin inhibitor (IαI) protein family. We have demonstrated the synthesis of HA by cumulus cells, and the presence of the IαI, tumor necrosis factor-alpha-induced protein 6 and pentraxin 3 in expanding oocyte-cumulus complexes (OCC). We have evaluated the covalent linkage of heavy chains of IαI proteins to HA, as the principal component of the expanded HA-rich cumulus ECM, in porcine OCC cultured in medium with specific inhibitors: AG1478 and lapatinib (both inhibitors of epidermal growth factor receptor tyrosine kinase activity); MG132 (a specific proteasomal inhibitor), indomethacin (cyclooxygenase inhibitor); and progesterone receptor antagonist (RU486). We have found that both RU486 and indomethacin does not disrupt the formation of the covalent linkage between the heavy chains of IαI to HA in the expanded OCC. In contrast, the inhibitors AG1478 and lapatinib prevent gonadotropin-induced cumulus expansion. Finally, the formation of oocyte-cumulus ECM relying on the covalent transfer of heavy chains of IαI molecules to HA has been inhibited in the presence of MG132.
- MeSH
- C-reaktivní protein metabolismus MeSH
- extracelulární matrix účinky léků metabolismus MeSH
- kumulární buňky cytologie účinky léků metabolismus MeSH
- kyselina hyaluronová metabolismus MeSH
- mifepriston farmakologie MeSH
- molekuly buněčné adheze metabolismus MeSH
- oocyty cytologie metabolismus MeSH
- rozmnožování účinky léků MeSH
- sérový amyloidový protein metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The production of prostaglandin E2 (PGE2) seems to play an important role in the ovulation process. PGE2 was found to induce cumulus expansion and meiosis resumption in mice, but little is known about its role in pigs. The goals of this study were (a) to assess the effect of PGE2 on the expression levels of cumulus expansion-related genes, (b) to define the signaling pathways that drive the PGE2-stimulated expression of cumulus expansion-related genes, (c) to measure the effect of PGE2 on the activation of key signaling molecules (MAPK3/1, PKB) and on hyaluronan production in cumulus cells, and (d) to assess the effect of PGE2 on meiosis resumption. We documented that PGE2 is able to induce the expression of cumulus expansion-related genes (HAS2, TNFAIP6) as well as genes involved in steroidogenesis (CYP11A1) or prostaglandin production (PTGS2). PGE2 is able to activate PKB and MAPK3/1 and induce mild cumulus expansion and meiosis resumption, but less efficiently than FSH.
- MeSH
- aktivace enzymů účinky léků MeSH
- dinoproston farmakologie MeSH
- down regulace účinky léků MeSH
- kumulární buňky cytologie účinky léků metabolismus MeSH
- mitogenem aktivovaná proteinkinasa 1 metabolismus MeSH
- mitogenem aktivovaná proteinkinasa 3 metabolismus MeSH
- oocyty cytologie účinky léků MeSH
- prasata MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- upregulace účinky léků MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The gonadotropin-induced resumption of oocyte meiosis in preovulatory follicles is preceded by expression of epidermal growth factor (EGF)-like peptides, amphiregulin (AREG) and epiregulin (EREG), in mural granulosa and cumulus cells. Both the gonadotropins and the EGF-like peptides possess the capacity to stimulate resumption of oocyte meiosis in vitro via activation of a broad signaling network in cumulus cells. To better understand the rapid genomic actions of gonadotropins (FSH) and EGF-like peptides, we analyzed transcriptomes of cumulus cells at 3 h after their stimulation. METHODS: We hybridized aRNA from cumulus cells to a pig oligonucleotide microarray and compared the transcriptomes of FSH- and AREG/EREG-stimulated cumulus cells with untreated control cells and vice versa. The identified over- and underexpressed genes were subjected to functional genomic analysis according to their molecular and cellular functions. The expression pattern of 50 selected genes with a known or potential function in ovarian development was verified by real-time qRT-PCR. RESULTS: Both FSH and AREG/EREG increased the expression of genes associated with regulation of cell proliferation, cell migration, blood coagulation and extracellular matrix remodeling. FSH alone induced the expression of genes involved in inflammatory response and in the response to reactive oxygen species. Moreover, FSH stimulated the expression of genes closely related to some ovulatory events either exclusively or significantly more than AREG/EREG (AREG, ADAMTS1, HAS2, TNFAIP6, PLAUR, PLAT, and HSD17B7). In contrast to AREG/EREG, FSH also increased the expression of genes coding for key transcription factors (CEBPB, FOS, ID1/3, and NR5A2), which may contribute to the differing expression profiles of FSH- and AREG/EREG-treated cumulus cells. CONCLUSIONS: The impact of FSH on cumulus cell gene transcription was higher than the impact of EGF-like factors in terms of the number of cell functions affected as well as the number of over- and underexpressed genes. Both FSH and EGF-like factors overexpressed genes involved in the post-ovulatory switch in steroidogenesis and tissue remodelling. However, FSH was remarkably more efficient in the up-regulation of several specific genes essential for ovulation of matured oocytes and also genes that been reported to play an important role in maturation of cumulus-enclosed oocytes in vitro.
- MeSH
- amfiregulin farmakologie fyziologie MeSH
- epidermální růstový faktor farmakologie fyziologie MeSH
- epiregulin farmakologie fyziologie MeSH
- folikuly stimulující hormon farmakologie fyziologie MeSH
- kultivované buňky MeSH
- kumulární buňky účinky léků metabolismus MeSH
- oocyty účinky léků metabolismus MeSH
- prasata MeSH
- regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Recent results indicate a key role for cyclic guanosine monophosphate (cGMP) in the regulation of oocyte meiotic arrest in preovulatory mammalian follicles. The aim of our study was to determine whether the resumption of oocyte meiosis and expansion of cumulus cells in isolated pig cumulus-oocyte complexes (COCs) can be blocked by a high intracellular concentration of cGMP, and whether this effect is mediated by a cGMP-dependent inhibition of mitogen-activated protein kinase 3/1 (MAPK3/1). METHODS: The COCs were isolated from ovaries of slaughtered gilts and cultured in vitro in M199 supplemented with 5% fetal calf serum. The expression levels of the C-type natriuretic peptide (CNP) precursor (NPPC) and its receptor (NPR2) mRNAs during the culture of COCs were determined by real-time RT-PCR. To control the intracellular concentration of cGMP in the COCs, the culture medium was further supplemented with CNP or various concentrations of synthetic cGMP analogues; the concentration of cGMP in COCs was then assessed by ELISA. The effect of the drugs on oocyte maturation was assessed after 24 and 44 h of culture by determining nuclear maturation. The expansion of cumulus cells was assessed by light microscopy and the expression of cumulus expansion-related genes by real-time RT-PCR. A possible effect of cGMP on FSH-induced activation of MAPK3/1 was assessed by immunoblotting the COC proteins with phospho-specific and total anti-Erk1/2 antibodies. RESULTS: The COCs expressed NPPC and NPR2, the key components of cGMP synthesis, and produced a large amount of cGMP upon stimulation with exogenous CNP, which lead to a significant (P < 0.05) delay in oocyte meiotic resumption. The COCs also responded to cGMP analogues by inhibiting the resumption of oocyte meiosis. The inhibitory effect of cGMP on meiotic resumption was reversed by stimulating the COCs with FSH. However, high concentration of intracellular cGMP was not able to suppress FSH-induced activation of MAPK3/1 in cumulus cells, cumulus expansion and expression of expansion-related genes (P > 0.05). CONCLUSIONS: The findings of this study indicate that high cGMP concentrations inhibit the maturation of pig oocytes in vitro but the inhibitory mechanism does not involve the suppression of MAPK3/1 activation in cumulus cells.
- MeSH
- aktivace enzymů účinky léků MeSH
- gonadotropiny farmakologie MeSH
- guanosinmonofosfát cyklický farmakologie MeSH
- kultivované buňky MeSH
- kumulární buňky účinky léků fyziologie MeSH
- meióza účinky léků MeSH
- mitogenem aktivovaná proteinkinasa 3 metabolismus MeSH
- oocyty účinky léků fyziologie MeSH
- oogeneze účinky léků MeSH
- Sus scrofa MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study was designed to determine whether inhibition of either cyclooxygenase-2 (COX-2) by indomethacin or progesterone receptor (PR) by PR antagonist, RU486, affects oocyte maturation, progesterone production, and covalent binding between hyaluronan (HA) and heavy chains of inter-α trypsin inhibitor, as well as expression of cumulus expansion-associated proteins (HA-binding protein, tumor necrosis factor α-induced protein 6, pentraxin 3) in oocyte-cumulus complexes (OCCs). The experiments were based on freshly isolated porcine OCC cultures in which the consequences of PR and COX-2 inhibition on the final processes of oocyte maturation were determined. Granulosa cells (GCs) and OCCs were cultured in medium supplemented with FSH/LH (both 100 ng/mL) in the presence/absence of RU486 or indomethacin. Western blot analysis, (3)H-glucosamine hydrochloride assay, immunofluorescence, and radioimmunoassay were performed. Only treatment with RU486 (25 μM) caused a decrease in the number of oocytes that reached germinal vesicle breakdown and metaphase II stage compared with indomethacin (100 μM) or FSH/LH treatment alone after 44 h. All treated OCCs synthesized an almost equal amount of HA. Heavy chains (of inter-α trypsin inhibitor)-HA covalent complexes were formed during in vitro FSH/LH-stimulated expansion in RU486- or indomethacin-treated OCCs. Follicle-stimulating hormone/LH-induced progesterone production by OCCs was increased in the presence of RU486 after 44 h. In contrast, a decrease of FSH/LH-stimulated progesterone production by GCs was detected in the presence of either RU486 or indomethacin after 72 h. We suggest that the PR-dependent pathway may be involved in the regulation of oocyte maturation. Both PR and COX-2 regulate FSH/LH-stimulated progesterone production by OCCs and GCs.
- MeSH
- antagonisté hormonů farmakologie MeSH
- C-reaktivní protein genetika metabolismus MeSH
- extracelulární matrix metabolismus MeSH
- folikuly stimulující hormon MeSH
- indomethacin farmakologie MeSH
- inhibitory cyklooxygenasy farmakologie MeSH
- IVM techniky veterinární MeSH
- kumulární buňky účinky léků fyziologie MeSH
- kyselina hyaluronová MeSH
- luteinizační hormon MeSH
- mifepriston farmakologie MeSH
- molekuly buněčné adheze genetika metabolismus MeSH
- oocyty účinky léků fyziologie MeSH
- prasata * MeSH
- progesteron metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- sérový amyloidový protein genetika metabolismus MeSH
- transportní proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: To determine whether inhibition of epidermal growth factor (EGF) receptor tyrosine kinase with lapatinib affects oocyte maturation, expression of the cumulus expansion-associated genes such as tumor necrosis factor alpha-induced protein 6 (TNFAIP6) and prostaglandin-endoperoxide synthase 2 (PTGS2), and synthesis of hyaluronan (HA) and progesterone (P) by porcine oocyte cumulus complexes (OCC). DESIGN: Our work focuses on lapatinib, an orally active small molecule that selectively inhibits the tyrosine kinase domain of both EGF receptor and human EGF receptor 2, and downstream signaling. SETTING: A reproductive biology laboratory. PATIENT(S): Not applicable. INTERVENTION(S): Porcine OCC were cultured in vitro in a medium with FSH/LH in the presence/absence of lapatinib. MAIN OUTCOME MEASURE(S): Methods performed: real-time reverse transcriptase-polymerase chain reaction (PCR), immunofluorescence, RIA. RESULT(S): In FSH/LH-stimulated and expanded cumulus oophorus extracellular matrix, HA was detected with biotinylated HA-binding proteins. However, weaker HA- and weaker cytoplasmic TNFAIP6 were detected were detected in lapatinib-pretreated OCC. The expression of the two cumulus expansion-associated gene transcripts was significantly decreased and synthesis of HA by cumulus cells was reduced. Lapatinib (10 μM) inhibited FSH/LH-induced oocyte meiotic maturation. Progesterone production increased after OCC stimulation with FSH/LH and was significantly decreased by lapatinib (10 μM). CONCLUSION(S): Lapatinib inhibits oocyte maturation and reduces expression of cumulus expansion-associated transcripts, and synthesis of HA and P in OCC cultured in vitro in FSH/LH-supplemented medium.
- MeSH
- buněčná diferenciace účinky léků fyziologie MeSH
- chinazoliny farmakologie MeSH
- folikuly stimulující hormon farmakologie MeSH
- inhibitory růstu farmakologie MeSH
- kultivované buňky MeSH
- kumulární buňky cytologie účinky léků MeSH
- meióza účinky léků fyziologie MeSH
- oocyty cytologie účinky léků MeSH
- prasata MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Porcine oocyte-cumulus complexes (OCCs) form an expanded cumulus extracellular matrix (ECM) in response to gonadotropins during meiotic maturation. Essential components of ECM are hyaluronan (HA), tumor necrosis factor α-induced protein 6 (TNFAIP6) and heavy chains (HC) of interalpha-trypsin inhibitor. To form expanded cumulus ECM, intermediate complexes (TNFAIP6-HC) must bind to HA to allow HC transfer onto HA. Protein turnover by the ubiquitin-proteasome pathway is poorly characterized in this process. It is known that the specific proteasomal inhibitor MG132 prevents cumulus expansion and formation of ECM. To determine whether inhibition of proteasomal proteolysis with MG132 affects cumulus cell steroidogenesis and expression of the cumulus expansion-related components (hyaluronan synthase type 2, HAS2, TNFAIP6) we cultured porcine OCCs and granulosa cells (GCs) in a medium supplemented with FSH/LH. Methods performed included real-time reverse transcription PCR, immunofluorescence and RIAs. The expression of TNFAIP6 and HAS2 transcripts increased significantly after the stimulation of OCCs and GCs with FSH/LH. In contrast, treatment with MG132 reduced the expression of TNFAIP6 and HAS2. Hyaluronan was detected with biotinylated HA-binding proteins within FSH/LH-stimulated expanded OCCs but not in those treated with MG132. Progesterone production, although increased almost three times after OCCs stimulation with FSH/LH, was significantly suppressed by MG132. The FSH/LH-stimulated a 40-fold increase in progesterone secretion by GCs was inhibited in the presence of MG132. In conclusion, MG132 affects progesterone secretion and expression of cumulus expansion-related components by cumulus and GCs, suggesting the requirement of ubiquitin-proteasome pathway-regulated protein turnover for formation of ECM during cumulus expansion in the preovulatory period in the pig.
- MeSH
- extracelulární matrix účinky léků metabolismus MeSH
- inhibitory cysteinových proteinas farmakologie MeSH
- inhibitory proteasomu MeSH
- kumulární buňky účinky léků metabolismus MeSH
- kvantitativní polymerázová řetězová reakce veterinární MeSH
- leupeptiny farmakologie MeSH
- messenger RNA biosyntéza genetika MeSH
- molekuly buněčné adheze biosyntéza MeSH
- oocyty účinky léků metabolismus MeSH
- prasata MeSH
- progesteron biosyntéza MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
It would be desirable to expand the existing general knowledge concerning direct action of metals on the ovary. Nevertheless, the results of testing of iron compound on porcine ovarian cells should be interpreted carefully because iron is an essential element which could also induce changes in cellular processes. The aim of this in vitro study was 1) to examine dose-dependent effects of iron on the secretory activity of porcine ovarian granulosa cells, and 2) to outline the potential intracellular mediators mediating these effects. Specifically, we evaluated the effect of iron sulphate on the release of insulin-like growth factor I (IGF-I) and progesterone, as well as the expression of markers of proliferation (cyclin B1) and apoptosis (caspase-3) in porcine ovarian granulosa cells. Concentrations of IGF-I and progesterone were determined by RIA, cyclin B1 and caspase-3 expression by immunocytochemistry (ICC). Our results show a significantly decreased IGF-I secretion by ovarian granulosa cells after iron sulphate addition at the doses 0.5 and 1.0 mg/ml. The iron sulphate additions at doses 0.17 and 1.0 mg/ml had no effect on progesterone secretion. In contrast, iron sulphate addition at doses 0.17-1.0 mg/ml resulted in stimulation of cyclin B1 and caspase-3 expression. In conclusion, the present results indicate a direct effect of iron on 1) secretion of growth factor IGF-I but not steroid hormone progesterone, 2) expression of markers of proliferation (cyclin B1), or 3) apoptosis (caspase-3) of porcine ovarian granulosa cells. These results support an idea that iron could play a regulatory role in porcine ovarian function: hormone release, proliferation and apoptosis.
- MeSH
- apoptóza MeSH
- biologické markery metabolismus MeSH
- cyklin B1 metabolismus MeSH
- imunohistochemie MeSH
- insulinu podobný růstový faktor I metabolismus MeSH
- kaspasa 3 metabolismus MeSH
- kumulární buňky metabolismus sekrece účinky léků MeSH
- ovarium metabolismus MeSH
- prasata MeSH
- progesteron metabolismus MeSH
- proliferace buněk MeSH
- železnaté sloučeniny farmakologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH