Antimicrobial and immunomodulatory potential of various Lactobacillus reuteri strains is closely connected to their metabolite production profile under given cultivation conditions. We determined the in vitro production of antimicrobial substances such as organic acids, ethanol, and reuterin by four strains of L. reuteri (L. reuteri E, L. reuteri KO5, L. reuteri CCM 3625, and L. reuteri ATCC 55730). All studied L. reuteri strains showed the ability to produce lactic acid, acetic acid, and ethanol with concominant consumption of glucose and together with phenyllactic acid-a potent antifungal compound-with concominant consumption of phenylalanine. The reuterin production from glycerol was confirmed for all analyzed lactobacilli strains except L. reuteri CCM 3625. Production of organic acids, ethanol, and reuterin is significantly involved in antimicrobial activity of lactobacilli which was determined using the dual-culture overlay diffusion method against six indicator bacteria and five indicator moulds. In comparison to the referential L. reuteri ATCC 55730, the highest inhibition potential was observed against Escherichia coli CCM 3988 and Pseudomonas aeruginosa CCM 3955. Among analyzed indicators of moulds, the growth of Alternaria alternata CCM F-128 was the most inhibited by all four analyzed L. reuteri strains. Finally, the immunomodulatory potential of analyzed lactobacilli were proven by the determination of the in vitro production of biogenic amines histamine and tyramine. L. reuteri CCM 3625 was able to produce tyramine, and L. reuteri E and L. reuteri KO5 were able to produce histamine under given cultivation conditions.
- MeSH
- antibakteriální látky analýza metabolismus farmakologie MeSH
- Escherichia coli účinky léků MeSH
- fermentace MeSH
- imunologické faktory analýza metabolismus farmakologie MeSH
- kyselina mléčná analýza metabolismus farmakologie MeSH
- kyselina octová analýza metabolismus farmakologie MeSH
- Limosilactobacillus reuteri chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- aplikace intravaginální MeSH
- bakteriální vaginóza * farmakoterapie prevence a kontrola MeSH
- Lacticaseibacillus rhamnosus metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- Limosilactobacillus reuteri metabolismus MeSH
- postmenopauza * účinky léků MeSH
- probiotika * farmakologie metabolismus terapeutické užití MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- randomizované kontrolované studie MeSH
Five new strains of lactobacilli isolated from goatling's stomach were identified by molecular-biological approaches. Profiles of fermentable saccharides, Gram staining, and cell morphology were also determined. They were identified as Lactobacillus reuteri (strains KO4b, KO4m, KO5) and as Lactobacillus plantarum (strains KG1z, KG4). In DNA samples of all newly isolated L. reuteri strains as well as in L. reuteri E (Lreu E; originated from lamb), the part of gldC gene, coding large subunit of glycerol dehydratase, that is necessary for 3-hydroxypropionaldehyde (3-HPA; reuterin) production, was amplified using two designed primer sets. However, the 3-HPA production was revealed only in the strain Lreu E. It produced five- or ten-fold lower amount of 3-HPA in comparison with probiotic L. reuteri ATCC 55730 in aerobic or anaerobic conditions, respectively. Moreover, Lreu E completely lost its production ability after ca. five passages in MRS medium. The co-incubation of Lreu E, but not other L. reuteri isolates, with Escherichia coli re-induced 3-HPA production. In the case of L. reuteri ATCC 55730, the 3-HPA production increased more than four times after co-incubation with E. coli.
CONTEXT: Low serum 25-hydroxyvitamin D is a risk factor for osteoporosis, cardiovascular disease, diabetes, and cancer. Disruption of noncholesterol sterol absorption due to cholesterol-lowering therapies may result in reduced fat-soluble vitamin absorption. OBJECTIVE: We have previously reported on the cholesterol-lowering efficacy and reduced sterol absorption of probiotic bile salt hydrolase active Lactobacillus reuteri NCIMB 30242; however, the effects on fat-soluble vitamins was previously unknown and the objective of the present study. DESIGN, SETTINGS, PATIENTS, AND INTERVENTION: The study was double-blind, placebo-controlled, randomized, parallel-arm, multicenter lasting 13 weeks. A total of 127 otherwise healthy hypercholesterolemic adults with low-density lipoprotein-cholesterol >3.4 mmol/L, triglycerides <4.0 mmol/L, and body mass index of 22 to 32 kg/m² were included. Subjects were recruited from 6 private practices in Prague, Czech Republic, and randomized to consume L. reuteri NCIMB 30242 or placebo capsules over a 9-week intervention period. OUTCOME MEASURES: The primary outcome measure was the change in serum low-density lipoprotein-cholesterol over the 9-week intervention. Analysis of fat-soluble vitamins at weeks 0 and 9 were performed post hoc. RESULTS: There were no significant differences between L. reuteri NCIMB 30242 and placebo capsule groups in serum vitamin A, vitamin E, or β-carotene or dietary intake over the intervention period (P > .05). L. reuteri NCIMB 30242 increased serum 25-hydroxyvitamin D by 14.9 nmol/L, or 25.5%, over the intervention period, which was a significant mean change relative to placebo of 17.1 nmol/L, or 22.4%, respectively (P = .003). CONCLUSIONS: To our knowledge, this is the first report of increased circulating 25-hydroxyvitamin D in response to oral probiotic supplementation.
- MeSH
- 25-hydroxyvitamin D 2 krev MeSH
- amidohydrolasy škodlivé účinky metabolismus MeSH
- anticholesteremika škodlivé účinky terapeutické užití MeSH
- bakteriální proteiny škodlivé účinky metabolismus MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- hypercholesterolemie krev dietoterapie MeSH
- intestinální absorpce MeSH
- kalcifediol krev MeSH
- LDL-cholesterol krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- Limosilactobacillus reuteri enzymologie metabolismus MeSH
- mladý dospělý MeSH
- nedostatek vitaminu D etiologie prevence a kontrola MeSH
- probiotika škodlivé účinky terapeutické užití MeSH
- senioři MeSH
- vitamin D metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Geografické názvy
- Česká republika MeSH