Neurosteroids are endogenous steroidal compounds that can modulate neuronal receptors. N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated, calcium-permeable ion channels that are of particular interest, as they participate in synaptic transmission and are implicated in various processes, such as learning, memory, or long-term neuronal potentiation. Positive allosteric modulators that increase the activity of NMDARs may provide a therapeutic aid for patients suffering from neuropsychiatric disorders where NMDAR hypofunction is thought to be involved, such as intellectual disability, autism spectrum disorder, or schizophrenia. We recently described a new class of pregn-5-ene and androst-5-ene 3beta-dicarboxylic acid hemiesters (2-24) as potent positive modulators of NMDARs. Considering the recommended guidelines for the early stage development of new, potent compounds, we conducted an in vitro safety assessment and plasma stability screening to evaluate their druglikeness. First, compounds were screened for their hepatotoxicity and mitochondrial toxicity in a HepG2 cell line. Second, toxicity in primary rat postnatal neurons was estimated. Next, the ability of compounds 2-24 to cross a Caco-2 monolayer was also studied. Finally, rat and human plasma stability screening revealed an unforeseen high stability of the C-3 hemiester moiety. In summary, by using potency/efficacy towards NMDARs data along with toxicity profile, Caco-2 permeability and plasma stability, compounds 14 and 15 were selected for further in vivo animal studies.
- MeSH
- androstenoly chemie farmakologie krev MeSH
- buňky Hep G2 MeSH
- cholesterol chemie farmakologie krev MeSH
- estery chemie farmakologie krev MeSH
- kyseliny dikarboxylové chemie farmakologie krev MeSH
- lidé MeSH
- poruchy autistického spektra farmakoterapie metabolismus MeSH
- stabilita léku MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
Neurosteroids are endogenous steroidal compounds that can modulate neuronal receptors. N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated, calcium-permeable ion channels that are of particular interest, as they participate in synaptic transmission and are implicated in various processes, such as learning, memory, or long-term neuronal potentiation. Positive allosteric modulators that increase the activity of NMDARs may provide a therapeutic aid for patients suffering from neuropsychiatric disorders where NMDAR hypofunction is thought to be involved, such as intellectual disability, autism spectrum disorder, or schizophrenia. We recently described a new class of pregn-5-ene and androst-5-ene 3β-dicarboxylic acid hemiesters (2-24) as potent positive modulators of NMDARs. Considering the recommended guidelines for the early stage development of new, potent compounds, we conducted an in vitro safety assessment and plasma stability screening to evaluate their druglikeness. First, compounds were screened for their hepatotoxicity and mitochondrial toxicity in a HepG2 cell line. Second, toxicity in primary rat postnatal neurons was estimated. Next, the ability of compounds 2-24 to cross a Caco-2 monolayer was also studied. Finally, rat and human plasma stability screening revealed an unforeseen high stability of the C-3 hemiester moiety. In summary, by using potency/efficacy towards NMDARs data along with toxicity profile, Caco-2 permeability and plasma stability, compounds 14 and 15 were selected for further in vivo animal studies.
- MeSH
- androstenoly krev chemie farmakologie MeSH
- buňky Hep G2 MeSH
- cholesterol krev chemie farmakologie MeSH
- estery krev chemie farmakologie MeSH
- krysa rodu rattus MeSH
- kyseliny dikarboxylové krev chemie farmakologie MeSH
- lidé MeSH
- mentální retardace farmakoterapie metabolismus MeSH
- mitochondrie účinky léků metabolismus MeSH
- molekulární struktura MeSH
- nádorové buňky kultivované MeSH
- neurony účinky léků metabolismus MeSH
- neuroprotektivní látky krev chemie farmakologie MeSH
- poruchy autistického spektra farmakoterapie metabolismus MeSH
- potkani Wistar MeSH
- pregnenolon analogy a deriváty krev farmakologie MeSH
- receptory N-methyl-D-aspartátu antagonisté a inhibitory metabolismus MeSH
- schizofrenie farmakoterapie metabolismus MeSH
- stabilita léku MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Klíčová slova
- kyselina bempedoová,
- MeSH
- hypolipidemika MeSH
- kyseliny dikarboxylové farmakologie chemie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- zprávy MeSH
A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C₅- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C₂), malonic (C₃), succinic (C₄) and maleic (C₄) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin-Ciocalteau reagent (FCR) and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) than isoquercitrin; ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies.
- MeSH
- antioxidancia chemická syntéza chemie farmakologie MeSH
- estery chemická syntéza chemie farmakologie MeSH
- katalýza MeSH
- kyseliny dikarboxylové chemie MeSH
- kyseliny karboxylové chemie MeSH
- molekulární struktura MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- quercetin analogy a deriváty chemická syntéza chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
Pharmaceutical cocrystals are H-bonded multicomponent mixtures formed from a molecular or ionic substance and a cocrystal former, which are solids under ambient conditions. The cocrystals are the latest material investigated to enhance drug properties such as solubility, dissolution rate, stability, powder flow, and hygroscopicity. Very close to cocrystals are salts which can be distinguished by the localization of proton between an acid and base. Crystal engineering of cocrystals is based on the concept of supramolecular synthons. The major experimental techniques in cocrystal screening are cocrystallization in solution, solvent evaporation, melt crystallisation, dry cogrinding, solvent-assisted grinding and cryogrinding.
- MeSH
- butyráty farmakologie chemie MeSH
- chemické jevy MeSH
- chemie farmaceutická metody trendy MeSH
- farmaceutická technologie metody trendy MeSH
- farmaceutický průmysl metody trendy MeSH
- financování organizované MeSH
- itrakonazol MeSH
- karbamazepin chemie MeSH
- kofein farmakologie chemie MeSH
- krystalizace metody trendy využití MeSH
- kyseliny dikarboxylové farmakologie chemická syntéza chemie MeSH
- kyseliny mandlové farmakologie chemie MeSH
- lékové formy MeSH
- objevování léků MeSH
- paracetamol farmakologie chemie MeSH
- rozpouštědla farmakologie chemie MeSH
- sacharin farmakologie chemie MeSH
- soli farmakologie chemie MeSH
A series of transdermal permeation enhancers based on dicarboxylic acid esters was studied. Single-chain amphiphiles were markedly more effective than the double-chain ones. Monododecyl maleate, that is a cis derivative, was a more potent enhancer than its trans isomer, while the activity of succinates strongly depended on the donor vehicle. No difference between diastereoisomeric tartaric and meso-tartaric acid derivatives was found.