BACKGROUND: The clinical heterogeneity of myasthenia gravis (MG), an autoimmune disease defined by antibodies (Ab) directed against the postsynaptic membrane, constitutes a challenge for patient stratification and treatment decision making. Novel strategies are needed to classify patients based on their biological phenotypes aiming to improve patient selection and treatment outcomes. METHODS: For this purpose, we assessed the serum proteome of a cohort of 140 patients with anti-acetylcholine receptor-Ab-positive MG and utilised consensus clustering as an unsupervised tool to assign patients to biological profiles. For in-depth analysis, we used immunogenomic sequencing to study the B cell repertoire of a subgroup of patients and an in vitro assay using primary human muscle cells to interrogate serum-induced complement formation. FINDINGS: This strategy identified four distinct patient phenotypes based on their proteomic patterns in their serum. Notably, one patient phenotype, here named PS3, was characterised by high disease severity and complement activation as defining features. Assessing a subgroup of patients, hyperexpanded antibody clones were present in the B cell repertoire of the PS3 group and effectively activated complement as compared to other patients. In line with their disease phenotype, PS3 patients were more likely to benefit from complement-inhibiting therapies. These findings were validated in a prospective cohort of 18 patients using a cell-based assay. INTERPRETATION: Collectively, this study suggests proteomics-based clustering as a gateway to assign patients to a biological signature likely to benefit from complement inhibition and provides a stratification strategy for clinical practice. FUNDING: CN and CBS were supported by the Forschungskommission of the Medical Faculty of the Heinrich Heine University Düsseldorf. CN was supported by the Else Kröner-Fresenius-Stiftung (EKEA.38). CBS was supported by the Deutsche Forschungsgemeinschaft (DFG-German Research Foundation) with a Walter Benjamin fellowship (project 539363086). The project was supported by the Ministry of Culture and Science of North Rhine-Westphalia (MODS, "Profilbildung 2020" [grant no. PROFILNRW-2020-107-A]).
- MeSH
- aktivace komplementu MeSH
- autoprotilátky * krev imunologie MeSH
- B-lymfocyty metabolismus imunologie MeSH
- dospělí MeSH
- fenotyp * MeSH
- lidé středního věku MeSH
- lidé MeSH
- myasthenia gravis * krev diagnóza imunologie metabolismus MeSH
- proteom MeSH
- proteomika * metody MeSH
- receptory cholinergní * imunologie metabolismus MeSH
- senioři MeSH
- shluková analýza MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Myasthenia gravis is a chronic antibody-mediated autoimmune disease disrupting neuromuscular synaptic transmission. Informative biomarkers remain an unmet need to stratify patients with active disease requiring intensified monitoring and therapy; their identification is the primary objective of this study. We applied mass spectrometry-based proteomic serum profiling for biomarker discovery. We studied an exploration and a prospective validation cohort consisting of 114 and 140 anti-acetylcholine receptor antibody (AChR-Ab)-positive myasthenia gravis patients, respectively. For downstream analysis, we applied a machine learning approach. Protein expression levels were confirmed by ELISA and compared to other myasthenic cohorts, in addition to myositis and neuropathy patients. Anti-AChR-Ab levels were determined by a radio receptor assay. Immunohistochemistry and immunofluorescence of intercostal muscle biopsies were employed for validation in addition to interactome studies of inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3). Machine learning identified ITIH3 as potential serum biomarker reflective of disease activity. Serum levels correlated with disease activity scores in the exploration and validation cohort and were confirmed by ELISA. Lack of correlation between anti-AChR-Ab levels and clinical scores underlined the need for biomarkers. In a subgroup analysis, ITIH3 was indicative of treatment responses. Immunostaining of muscle specimens from these patients demonstrated ITIH3 localization at the neuromuscular endplates in myasthenia gravis but not in controls, thus providing a structural equivalent for our serological findings. Immunoprecipitation of ITIH3 and subsequent proteomics lead to identification of its interaction partners playing crucial roles in neuromuscular transmission. This study provides data on ITIH3 as a potential pathophysiological-relevant biomarker of disease activity in myasthenia gravis. Future studies are required to facilitate translation into clinical practice.
- MeSH
- autoprotilátky krev MeSH
- biologické markery * krev metabolismus MeSH
- dospělí MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- myasthenia gravis * krev diagnóza patologie metabolismus MeSH
- proteomika metody MeSH
- receptory cholinergní imunologie metabolismus MeSH
- sekreční inhibitory proteinas krev MeSH
- senioři MeSH
- strojové učení MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: To identify novel genetic and epigenetic factors associated with Myasthenia gravis (MG) using an identical twins experimental study design. METHODS: The transcriptome and methylome of peripheral monocytes were compared between monozygotic (MZ) twins discordant and concordant for MG, as well as with MG singletons and healthy controls, all females. Sets of differentially expressed genes and differentially methylated CpGs were validated using RT-PCR for expression and target bisulfite sequencing for methylation on additional samples. RESULTS: >100 differentially expressed genes and ∼1800 differentially methylated CpGs were detected in peripheral monocytes between MG patients and controls. Several transcripts associated with immune homeostasis and inflammation resolution were reduced in MG patients. Only a relatively few genes differed between the discordant healthy and MG co-twins, and both their expression and methylation profiles demonstrated very high similarity. INTERPRETATION: This is the first study to characterize the DNA methylation profile in MG, and the expression profile of immune cells in MZ twins with MG. Results suggest that numerous small changes in gene expression or methylation might together contribute to disease. Impaired monocyte function in MG and decreased expression of genes associated with inflammation resolution could contribute to the chronicity of the disease. Findings may serve as potential new predictive biomarkers for disease and disease activity, as well as potential future targets for therapy development. The high similarity between the healthy and the MG discordant twins, suggests that a molecular signature might precede a clinical phenotype, and that genetic predisposition may have a stronger contribution to disease than previously assumed.
- MeSH
- CpG ostrůvky MeSH
- dospělí MeSH
- dvojčata monozygotní * MeSH
- epigeneze genetická MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA * MeSH
- mladý dospělý MeSH
- monocyty imunologie metabolismus MeSH
- myasthenia gravis genetika metabolismus MeSH
- receptor TREM-1 genetika metabolismus MeSH
- senioři MeSH
- signální transdukce MeSH
- stanovení celkové genové exprese MeSH
- studie případů a kontrol MeSH
- transkriptom * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- studie na dvojčatech MeSH
INTRODUCTION: Determination of acetylcholinesterase and butyrylcholinesterase activity has become an important tool in drug design and discovery as well as in medicine and toxicology. There are a large number of compounds that are able to modulate cholinesterase activity. These compounds can be used for pharmacological management of various disorders (e.g., Alzheimer's disease, myasthenia Gravis). Moreover, organophosphate poisoning is frequently diagnosed via a cholinesterase activity assay. This broad variety of methods has been developed over the past decades for cholinesterase activity quantification. AREAS COVERED: This review provides a summary of the methods that are based on specific properties of cholinesterases and their interactions with native or artificial substrates. The authors also aim to provide an overview of different techniques used for the determination of quantitative cholinesterase activity. Specifically, the authors describe and discuss the manometric, potentiometric, titrimetric, photometric, fluorometric, and radioisotopic methods. EXPERT OPINION: Existing methods are able to cover most of the problems that arise during cholinesterase activity determination. Colorimetry according to Ellman has proved to be the most useful and versatile approach. It may be used in various protocols for the determination of pesticide or nerve agent exposure or for the development of new drugs. Its possible improvement lies in optimization of hemoglobin-rich samples. The progress of the most common methods (including Ellman) depends on miniaturization and modern physical platforms (e.g., optical fibers, chip methods, or nanotechnologies).
- MeSH
- Alzheimerova nemoc farmakoterapie metabolismus MeSH
- butyrylcholinesterasa analýza metabolismus MeSH
- chemické bojové látky farmakologie MeSH
- chemické techniky analytické metody MeSH
- cholinesterasové inhibitory farmakologie MeSH
- cholinesterasy analýza metabolismus MeSH
- lidé MeSH
- myasthenia gravis farmakoterapie metabolismus MeSH
- racionální návrh léčiv MeSH
- referenční hodnoty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Background. Cholinesterases are a group of serine hydrolases that split the neurotransmitter acetylcholine (ACh) and terminate its action. Of the two types, butyrylcholinesterase and acetylcholinesterase (AChE), AChE plays the key role in ending cholinergic neurotransmission. Cholinesterase inhibitors are substances, either natural or man-made that interfere with the break-down of ACh and prolong its action. Hence their relevance to toxicology and pharmacology. Methods and Results. The present review summarizes current knowledge of the cholinesterases and their inhibition. Particular attention is paid to the toxicology and pharmacology of cholinesterase-related inhibitors such as nerve agents (e.g. sarin, soman, tabun, VX), pesticides (e.g. paraoxon, parathion, malathion, malaoxon, carbofuran), selected plants and fungal secondary metabolites (e.g. aflatoxins), drugs for Alzheimer’s disease (e.g. huperzine, metrifonate, tacrine, donepezil) and Myasthenia gravis (e.g. pyridostigmine) treatment and other compounds (propidium, ethidium, decamethonium). Conclusions. The crucial role of the cholinesterases in neural transmission makes them a primary target of a large number of cholinesterase-inhibiting drugs and toxins. In pharmacology, this has relevance to the treatment of neurodegenerative disorders.
- MeSH
- acetylcholinesterasa farmakologie metabolismus MeSH
- Alzheimerova nemoc enzymologie farmakoterapie metabolismus MeSH
- butyrylcholinesterasa farmakologie metabolismus MeSH
- cholinesterasové inhibitory farmakologie terapeutické užití toxicita MeSH
- cholinesterasy farmakologie metabolismus MeSH
- molekulární struktura MeSH
- myasthenia gravis enzymologie farmakoterapie metabolismus MeSH
- organofosforové sloučeniny toxicita MeSH
- sarin farmakologie toxicita MeSH
- vazebná místa účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH