polyhydroxybutyrate (PHB) Dotaz Zobrazit nápovědu
Vinasse, a recalcitrant waste of the ethanol industry was employed for the production of polyhydroxyalkanoate (PHA) by the extremely halophilic archaeon, Haloarcula marismortui in shake flasks. The PHA was recovered by osmotic lysis of the cells and subsequent purification by sodium hypochlorite and organic solvents. Through UV-vis spectroscopy, differential scanning calorimetry, Fourier transform infrared, and nuclear magnetic resonance spectroscopy, the PHA was found to have characteristics very similar to that of the standard polyhydroxybutyrate (PHB) from Sigma. Inhibitory effect of polyphenols contained in vinasse was assessed by a quick and reliable cup-plate agar-diffusion method. Raw vinasse (10%) was utilized leading to accumulation of 23% PHA (of cell dry weight) and following an efficacious pre-treatment process through adsorption on activated carbon, 100% pre-treated vinasse could be utilized leading to 30% accumulation of PHB by H. marismortui. Maximum specific growth rate, specific production rate, and volumetric productivity attained using 10% raw vinasse were comparable to that obtained using a previously reported nutrient deficient medium (NDM), while the values with 100% pre-treated vinasse were higher than that determined using NDM medium. This is the first report of polyhydroxybutyrate production by a halophilic microorganism utilizing vinasse.
Numerous prokaryotes accumulate polyhydroxybutyrate (PHB) intracellularly as a storage material. It has also been proposed that PHB accumulation improves bacterial stress resistance. Cupriavidus necator and its PHB non-accumulating mutant were employed to investigate the protective role of PHB under hypertonic conditions. The presence of PHB granules enhanced survival of the bacteria after exposure to hypertonic conditions. Surprisingly, when coping with such conditions, the bacteria did not utilize PHB to harvest carbon or energy, suggesting that, in the osmotic upshock of C. necator, the protective mechanism of PHB granules is not associated with their hydrolysis. The presence of PHB granules influenced the overall properties of the cells, since challenged PHB-free cells underwent massive plasmolysis accompanied by damage to the cell membrane and the leakage of cytoplasm content, while no such effects were observed in PHB containing bacteria. Moreover, PHB granules demonstrated "liquid-like" properties indicating that they can partially repair and stabilize cell membranes by plugging small gaps formed during plasmolysis. In addition, the level of dehydration and changes in intracellular pH in osmotically challenged cells were less pronounced for PHB-containing cultures, demonstrating the important role of PHB for bacterial survival under hyperosmotic conditions.
- MeSH
- časové faktory MeSH
- Cupriavidus necator cytologie účinky léků metabolismus ultrastruktura MeSH
- cytoplazmatická granula účinky léků metabolismus ultrastruktura MeSH
- elektronová kryomikroskopie MeSH
- fluoresceiny metabolismus MeSH
- fluorescenční mikroskopie MeSH
- hydroxybutyráty metabolismus MeSH
- hypertonické roztoky farmakologie MeSH
- krystalizace MeSH
- mikrobiální viabilita účinky léků MeSH
- osmotický tlak účinky léků MeSH
- termogravimetrie MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
The chorioallantoic membrane (CAM) is a highly vascularized avian extraembryonic membrane widely used as an in vivo model to study angiogenesis and its inhibition in response to tissues, cells, or soluble factors. In recent years, the use of CAM has become an integral part of the biocompatibility testing process for developing biomaterials intended for regenerative strategies and tissue engineering applications. In this study, we used the chicken ex ovo CAM assay to investigate the angiogenic potential of innovative acellular biopolymer polyhydroxybutyrate/chitosan (PHB/CHIT) scaffold, which is intended for the treatment of hard tissue defects, depending on treatment with pro- and anti-angiogenic substances. On embryonic day (ED) 7, the experimental biomaterials were placed on the CAM alone or soaked in vascular endothelial growth factor (VEGF-A), saline solution (PHY), or tyrosine kinase inhibitor (SU5402). After 72 h, the formation of vessels was analyzed in the surrounding area of the scaffold and inside the pores of the implants, using markers of embryonic endothelium (WGA, SNA), myofibroblasts (α-SMA), and macrophages (KUL-01). The morphological and histochemical analysis showed strong angiogenic potential of untreated scaffolds without additional effect of the angiogenic factor, VEGF-A. The lowest angiogenic potential was observed in scaffolds soaked with SU5402. Gene expression of pro-angiogenic growth factors, i.e., VEGF-A, ANG-2, and VE-CAD, was upregulated in untreated scaffolds after 72 h, indicating a pro-angiogenic environment. We concluded that the PHB/CHIT has a strong endogenous angiogenic potential and could be promising biomaterial for the treatment of hard tissue defects.
- Publikační typ
- časopisecké články MeSH
AIM: This study aimed at unprecedented physical and chemical evaluation of the 'green plastics' polyhydroxyalkanoates (PHAs), in an extremely halotolerant Halomonas elongata strain 2FF under high-salt concentration. METHODS AND RESULTS: The investigated bacterial strain was isolated from the surface water of the hypersaline Fără Fund Lake. The 16S rRNA gene sequence phylogeny and phenotypic analysis indicated that the isolate belonged to H. elongata. PHA inclusions were observed by Sudan Black B, Nile Red staining, and transmission electron microscopy during growth at high salinity (10%, w/v, NaCl) on 1% (w/v) d-glucose. The produced polymer was quantitatively and qualitatively assessed using crotonic acid assay, elemental analysis, Fourier transform infrared and Raman spectroscopies. Additionally, X-ray powder diffraction, 1 H-NMR spectroscopy, and differential scanning calorimetry were applied. The investigations showed that the intracellular polymer was polyhydroxybutyrate (PHB) of which the strain produced up to 40 wt% of total cell dry weight after 48 h. The analysis of phaC gene from the isolated H. elongata strain indicated that the encoded PHA synthase belongs to Class I PHA synthase family. CONCLUSIONS: Overall, our investigations pointed out that the halotolerant H. elongata strain 2FF was capable to produce significant amounts of PHB from d-glucose, and PHAs from various carbon substrates at high-salt concentrations. SIGNIFICANCE AND IMPACT OF THE STUDY: The tested strain showed the ability for significant production of natural, biodegradable polymers under nutrient limitation and hypersaline conditions suggesting its potentiality for further metabolic and molecular investigations towards enhanced biopolymer production. Additionally, this study reports on the unprecedented use of Raman and XPRD techniques to investigate PHAs of an extremely halotolerant bacterium, thus expanding the repertoire of physical methods to study green plastics derived from extremophilic microorganisms.
- MeSH
- biopolymery biosyntéza MeSH
- chlorid sodný metabolismus MeSH
- fylogeneze MeSH
- Halomonas genetika izolace a purifikace metabolismus MeSH
- jezera mikrobiologie MeSH
- polyhydroxyalkanoáty biosyntéza chemie MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Rumunsko MeSH
Accumulation of polyhydroxybutyrate (PHB) seems to be a common metabolic strategy adopted by many bacteria to cope with cold environments. This work aimed at evaluating and understanding the cryoprotective effect of PHB. At first a monomer of PHB, 3-hydroxybutyrate, was identified as a potent cryoprotectant capable of protecting model enzyme (lipase), yeast (Saccharomyces cerevisiae) and bacterial cells (Cupriavidus necator) against the adverse effects of freezing-thawing cycles. Further, the viability of the frozen-thawed PHB accumulating strain of C. necator was compared to that of the PHB non-accumulating mutant. The presence of PHB granules in cells was revealed to be a significant advantage during freezing. This might be attributed to the higher intracellular level of 3-hydroxybutyrate in PHB accumulating cells (due to the action of parallel PHB synthesis and degradation, the so-called PHB cycle), but the cryoprotective effect of PHB granules seems to be more complex. Since intracellular PHB granules retain highly flexible properties even at extremely low temperatures (observed by cryo-SEM), it can be expected that PHB granules protect cells against injury from extracellular ice. Finally, thermal analysis indicates that PHB-containing cells exhibit a higher rate of transmembrane water transport, which protects cells against the formation of intracellular ice which usually has fatal consequences.
Using scaffolds with appropriate porosity represents a potential approach for repair of critical-size bone defects. Vascularization is essential for bone formation and healing. This study investigates methods for monitoring angiogenesis within porous biopolymer scaffolds on the basis of polyhydroxybutyrate (PHB)/chitosan. We use the chick and quail chorioallantoic membrane (CAM) assay as an in vivo model focused on the formation of new blood vessels inside the implant structure. Chemical properties of the surface in biopolymer scaffold matrix were characterized as well as the tissue reaction of the CAM. Implantation of a piece of polymer scaffold results in vascular reaction, documented visually and by ultrasound biomicroscopy. Histological analysis shows myofibroblast reaction (smooth muscle actin-positive cells) without excessive collagen deposition. Cell invasion is observed inside the implant, and QH1 marker, detecting hemangioblasts and endothelial cells of quail origin, confirms the presence of vascular network. The CAM assay is a rapid and easy way to test biocompatibility and vasculogenic potential of new candidate scaffolds for bone tissue bioengineering with respect to the 3R´ s.
- MeSH
- biokompatibilní materiály MeSH
- chorioalantoická membrána krevní zásobení fyziologie MeSH
- fyziologická neovaskularizace fyziologie MeSH
- kosti a kostní tkáň * MeSH
- křepelky a křepelovití MeSH
- kuřecí embryo MeSH
- regenerace kostí fyziologie MeSH
- tkáňové inženýrství * MeSH
- tkáňové podpůrné struktury * MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Three biodegradable plastics materials, namely pure poly(l-lactide) (PLA), PLA with plasticizer triacetine (TAC) and the mixture PLA/polyhydroxybutyrate (PHB) and TAC were investigated concerning changes of physical properties due to biodegradation in compost at 58°C up to 16days. With rising time of degradation in compost, both number and weight molecular masses were decreasing progressively, but only marginal change of the polydispersity index was observed which indicates that biodegradation is not random process. FTIR spectroscopy revealed that in spite of the extensive decrease of molecular weight, no substantial change in chemical composition was found. The most significant modification of the spectra consisted in an appearing of the broad band in region 3100-3300cm-1, which was assigned to a formation of biofilm on the sample surfaces. This effect appeared for all three materials, however, it was much more pronounced for samples containing also triacetine. Measurement of changes in crystalline portion confirmed that amorphous phase degrades substantially faster compared to crystalline part. The plasticizer triacetine is disappearing also rather fast from the sample resulting besides other effect also in a temporary increase of Tg, which at the beginning grows almost to the value typical for PLA without plasticizer but later the Tg is decreasing due to substantial changes in molecular weight. Generally during composting, the samples keep shape for up to 8days, after that time the material disintegrates to rough powder.
Additive Manufacturing (AM) is a name of a group of technologies that build 3D objects by adding layer-upon-layer of material. There are many technologies, including Rapid Prototyping (RP), Direct Digital Manufacturing (DDM), layered manufacturing and additive fabrication. Many types of materials can be used for AM technology. Biodegradable polymers such as polylactic acid (PLA) and polyhydroxybutyrate (PHB), are currently the subject of intensive research in the field of additive manufacturing and regenerative medicine. A number of biodegradable and bioresorbable materials, as well as scaffold designs, have been experimentally and clinically studied in many research facilities around the world. For effective using of bioprinting technologies in tissue and biomedical engineering, the knowledge of material and technological parameters in the process of printing is necessary. In this study the 3D printer Bioplotter EnvisionTEC (the printer with ability to print different materials from hydrogel to plastic materials) was used. Scaffolds for the purpose of the experiment were prepared via extrusion-based bioprinting. Experimental part of this study was focused on defining the influence of printing parameters and technological pre-processing of the material on quality and mechanical and geometrical properties of printed parts. Testing of printed samples showed high influence of pre-processing of material, mainly drying process, on mechanical and geometric quality of samples. Drying of material before printing process makes the material more stable and allows it to maintain defined material properties for a longer time than non-dried material. Time of heating of the material in printing cartridge has also high impact on material behaviour. Test results showed that if the time of heating of the material in the high temperature cartridge exceeds defined time limit, the material starts to degrade and is no more usable.
- MeSH
- 3D tisk * MeSH
- biokompatibilní materiály * chemie MeSH
- biomedicínské technologie MeSH
- kyselina polyglykolová chemie MeSH
- lidé MeSH
- polymery * MeSH
- pružnost MeSH
- testování materiálů MeSH
- tkáňové inženýrství * MeSH
- tkáňové podpůrné struktury MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH