Being a chilling-sensitive staple crop, rice (Oryza sativa L.) is vulnerable to climate change. The competence of rice to withstand chilling stress should, therefore, be enhanced through technological tools. The present study employed chemical intervention like application of sodium nitroprusside (SNP) as nitric oxide (NO) donor and elucidated the underlying morpho-physiological and biochemical mechanisms of NO-mediated chilling tolerance in rice plants. At germination stage, germination indicators were interrupted by chilling stress (5.0 ± 1.0 °C for 8 h day-1), while pretreatment with 100 μM SNP markedly improved all the indicators. At seedling stage (14-day-old), chilling stress caused stunted growth with visible toxicity along with alteration of biochemical markers, for example, increase in oxidative stress markers (superoxide, hydrogen peroxide, and malondialdehyde) and osmolytes (total soluble sugar; proline and soluble protein content, SPC), and decrease in chlorophyll (Chl), relative water content (RWC), and antioxidants. However, NO application attenuated toxicity symptoms with improving growth attributes which might be related to enhance activities of antioxidants, mineral contents, Chl, RWC and SPC. Furthermore, principal component analysis indicated that water imbalance and increased oxidative damage were the main contributors to chilling injury, whereas NO-mediated mineral homeostasis and antioxidant defense were the critical determinants for chilling tolerance in rice. Collectively, our findings revealed that NO protects against chilling stress through valorizing cellular defense mechanisms, suggesting that exogenous application of NO could be a potential tool to evolve cold tolerance as well as climate resilience in rice.
- MeSH
- donory oxidu dusnatého farmakologie MeSH
- homeostáza účinky léků MeSH
- klíčení účinky léků MeSH
- malondialdehyd metabolismus MeSH
- nitroprusid farmakologie MeSH
- nízká teplota MeSH
- ochrana úrody metody MeSH
- oxid dusnatý metabolismus MeSH
- peroxid vodíku metabolismus MeSH
- peroxidace lipidů účinky léků MeSH
- peroxidasy metabolismus MeSH
- reakce na chladový šok fyziologie MeSH
- rýže (rod) účinky léků MeSH
- semenáček účinky léků MeSH
- superoxidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Early stages of ontogenesis determining subsequent growth, development, and productivity of crops can be affected by wastewater and sludge contaminated with pharmaceuticals. Diclofenac (DCF) and paracetamol (PCT; both 0.0001 to 10 mg/L) did not affect seed germination and primary root length of onion, lettuce, pea, and tomato. Conversely, 20-day-old pea and maize plants exhibited decrease in biomass production, leaf area (by approx. 40% in pea and 70% in maize under 10 mg/L DCF), or content of photosynthetic pigments (by 10% and 60% under 10 mg/L PCT). Quantum yields of photosystem II were reduced only in maize (FV/FM and ΦII by more than 40% under 10 mg/L of both pharmaceuticals). Contents of H2O2 and superoxide increased in roots of both species (more than four times under 10 mg/L PCT in pea). Activities of antioxidant enzymes were elevated in pea under DCF treatments, but decreased in maize under both pharmaceuticals. Oxidative injury of root cells expressed as lowered oxidoreductase activity (MTT assay, by 40% in pea and 80% in maize) and increase in malondialdehyde content (by 60% and 100%) together with the membrane integrity disruption (higher Evans Blue accumulation, by 100% in pea and 300% in maize) confirmed higher sensitivity of maize as a C4 monocot plant to both pharmaceuticals.
- MeSH
- antioxidancia analýza MeSH
- chemické látky znečišťující vodu toxicita MeSH
- diklofenak analýza toxicita MeSH
- fotosyntéza účinky léků MeSH
- klíčení účinky léků MeSH
- kořeny rostlin účinky léků metabolismus MeSH
- listy rostlin účinky léků MeSH
- malondialdehyd analýza MeSH
- odpadní voda chemie MeSH
- paracetamol analýza toxicita MeSH
- peroxid vodíku analýza metabolismus MeSH
- semena rostlinná účinky léků fyziologie MeSH
- zemědělské plodiny účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
Hydrogen peroxide promotes seed germination, but the molecular mechanisms underlying this process are unclear. This study presents the results of eggplant (Solanum melongena) germination analyses conducted at two different temperatures and follows the effect of hydrogen peroxide treatment on seed germination and the seed proteome. Hydrogen peroxide was found to promote eggplant germination in a way not dissimilar to that of increased temperature stimuli. LC-MS profiling detected 729 protein families, 77 of which responded to a temperature increase or hydrogen peroxide treatment. These differentially abundant proteins were found to be involved in a number of processes, including protein and amino acid metabolism, carbohydrate metabolism, and the glyoxylate cycle. There was a very low overlap between hydrogen peroxide and temperature-responsive proteins, highlighting the differences behind the seemingly similar outcomes. Furthermore, the observed changes from the seed proteome indicate that hydrogen peroxide treatment diminished the seed endogenous hydrogen peroxide pool and that a part of manifested positive hydrogen peroxide effect might be related to altered sensitivity to abscisic acid.
- MeSH
- chromatografie kapalinová MeSH
- fyziologický stres účinky léků MeSH
- hmotnostní spektrometrie MeSH
- klíčení účinky léků MeSH
- metabolismus sacharidů účinky léků MeSH
- peroxid vodíku farmakologie MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- rostlinné proteiny metabolismus MeSH
- Solanum melongena účinky léků fyziologie MeSH
- teplota MeSH
- vývojová regulace genové exprese účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Strigolactones (SLs) have a vast number of ecological implications because of the broad spectrum of their biological activities. Unfortunately, the limited availability of SLs restricts their applicability for the benefit of humanity and renders synthesis the only option for their production. However, the structural complexity of SLs impedes their economical synthesis, which is unfeasible on a large scale. Synthesis of SL analogues and mimics with a simpler structure, but with retention of bioactivity, is the solution to this problem. RESULTS: Here, we present eight new hybrid-type SL analogues derived from auxin, synthesized via coupling of auxin ester [ethyl 2-(1H-indol-3-yl)acetate] and of ethyl 2-phenylacetate with four D-rings (mono-, two di- and trimethylated). The new hybrid-type SL analogues were bioassayed to assess the germination activity of seeds of the parasitic weeds Striga hermonthica, Orobanche minor and Phelipanche ramosa using the classical method of counting germinated seeds and a colorimetric method. The bioassays revealed that analogues with a natural monomethylated D-ring had appreciable to good activity towards the three species and were the most active derivatives. By contrast, derivatives with the trimethylated D-ring showed no activity. The dimethylated derivatives (2,4-dimethyl and 3,4-dimethyl) were slightly active, especially towards P. ramosa. CONCLUSIONS: New hybrid-type analogues derived from auxins have been prepared. These analogues may be attractive as potential suicidal germination agents for parasitic weed control because of their ease of preparation and relevant bioactivity. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
- MeSH
- klíčení účinky léků MeSH
- kontrola plevele metody MeSH
- kyseliny indoloctové chemie MeSH
- laktony chemická syntéza MeSH
- Orobanchaceae účinky léků fyziologie MeSH
- Orobanche účinky léků fyziologie MeSH
- plevel účinky léků fyziologie MeSH
- semena rostlinná účinky léků fyziologie MeSH
- Striga účinky léků fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
The biologically active molecules karrikinolide (KAR1) and trimethylbutenolide (TMB) present in wildfire smoke play a key role in regulating seed germination of many plant species. To elucidate the physiological mechanism by which smoke-water (SW), KAR1, and TMB regulate seed germination in photosensitive 'Grand Rapids' lettuce (Lactuca sativa), we investigated levels of the dormancy-inducing hormone abscisic acid (ABA), three auxin catabolites, and cytokinins (26 isoprenoid and four aromatic) in response to these compounds. Activity of the hydrolytic enzymes α-amylase and lipase along with stored food reserves (lipids, carbohydrate, starch, and protein) were also assessed. The smoke compounds precisely regulated ABA and hydrolytic enzymes under all light conditions. ABA levels under red (R) light were not significantly different in seeds treated with TMB or water. However, TMB-treated seeds showed significantly inhibited germination (33%) compared with water controls (100%). KAR1 significantly enhanced total isoprenoid cytokinins under dark conditions in comparison with other treatments; however, there was no significant effect under R light. Enhanced levels of indole-3-aspartic acid (an indicator of high indole-3-acetic acid accumulation, which inhibits lettuce seed germination) and absence of trans-zeatin and trans-zeatin riboside (the most active cytokinins) in TMB-treated seeds might be responsible for reduced germination under R light. Our results demonstrate that SW and KAR1 significantly promote lettuce seed germination by reducing levels of ABA and enhancing the activity of hydrolytic enzymes, which aids in mobilizing stored reserves. However, TMB inhibits germination by enhancing ABA levels and reducing the activity of hydrolytic enzymes.
- MeSH
- furany farmakologie MeSH
- fytochrom metabolismus MeSH
- gama-butyrolakton analogy a deriváty farmakologie MeSH
- klíčení účinky léků MeSH
- kouř * MeSH
- lékové interakce MeSH
- pyrany farmakologie MeSH
- regulátory růstu rostlin metabolismus MeSH
- salát (hlávkový) účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Strigolactones (SLs) constitute a new class of plant hormones of increasing importance in plant science. The structure of natural SLs is too complex for ready access by synthesis. Therefore, much attention is being given to design of SL analogues and mimics with a simpler structure but with retention of bioactivity. Here new hybrid type SL mimics have been designed derived from auxins, the common plant growth regulators. Auxins were simply coupled with the butenolide D-ring using bromo (or chloro) butenolide. D-rings having an extra methyl group at the vicinal C-3' carbon atom, or at the C-2' carbon atom, or at both have also been studied. The new hybrid type SL mimics were bioassayed for germination activity of seeds of the parasitic weeds S. hermonthica, O. minor and P. ramosa using the classical method of counting germinated seeds and a colorimetric method. For comparison SL mimics derived from phenyl acetic acid were also investigated. The bioassays revealed that mimics with a normal D-ring had appreciable to good activity, those with an extra methyl group at C-2' were also appreciably active, whereas those with a methyl group in the vicinal C-3' position were inactive (S. hermonthica) or only slightly active. The new hybrid type mimics may be attractive as potential suicidal germination agents in agronomic applications.
- MeSH
- biomimetické materiály chemická syntéza chemie farmakologie MeSH
- klíčení účinky léků MeSH
- kyseliny indoloctové chemická syntéza chemie farmakologie MeSH
- laktony chemická syntéza chemie farmakologie MeSH
- molekulární struktura MeSH
- plevel účinky léků růst a vývoj MeSH
- racionální návrh léčiv MeSH
- regulátory růstu rostlin chemická syntéza chemie farmakologie MeSH
- stabilita léku MeSH
- Publikační typ
- časopisecké články MeSH
Somatic embryogenesis is an important biotechnological technique which can be used in studies associated with environmental stress. Four embryogenic cell lines of Norway spruce were grown on media enriched with copper and arsenic in concentration ranges 50-500 μM and 10-50 μM, respectively. The effects were observed during subsequent stages of somatic embryogenesis, the characteristics evaluated being proliferation potential, average number of somatic embryos obtained per g/fresh weight, morphology of developed somatic embryos, metal uptake, and microanalysis of macro- and micronutrients uptake. Copper and arsenic at higher concentrations significantly reduced the growth of early somatic embryos. In almost all treatments, the cell line V-1-3 showed the best performance compared with the other lines tested. Environmental scanning electron microscopy was used to visualize and identify morphological abnormalities in the development of somatic embryos. Abnormalities observed were classified into several categories: meristemless somatic embryos, somatic embryos with disrupted meristem, reduced number of cotyledons, single cotyledon and fused cotyledons. With the application of a low temperature method for the environmental scanning electron microscope, samples were stabilized and whole meristems could be investigated in their native state. As far as we are aware, this is the first report of the effect of copper and arsenic during the process of somatic embryogenesis and the first to evaluate the content of macro and micronutrients uptake in Norway spruce.
- MeSH
- aktivní transport MeSH
- arsen farmakokinetika toxicita MeSH
- biotechnologie MeSH
- buněčné linie MeSH
- fyziologický stres MeSH
- klíčení účinky léků MeSH
- látky znečišťující životní prostředí farmakokinetika toxicita MeSH
- měď farmakokinetika toxicita MeSH
- mikroskopie elektronová rastrovací MeSH
- smrk účinky léků embryologie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Strigolactones are a unique class of plant metabolites which serve as a rhizosphere signal for parasitic plants and evocate their seed germination. The expansion of these parasitic weeds in the food crop fields urgently calls for their increased control and depletion. Simple strigolactone analogues able to stimulate seed germination of these parasitic plants may represent an efficient control measure through the induction of suicidal germination. RESULTS: Triazolide-type strigolactone mimics were easily synthesized in three steps from commercially available materials. These derivatives induced effectively seed germination of Phelipanche ramosa with EC50 as low as 5.2 × 10-10 M. These mimics did not induce seed germination of Striga hermonthica even at high concentration (≥1 × 10-5 M). CONCLUSIONS: Simple and stable strigolactone mimics with selective activity against Phelipanche ramosa were synthesized. © 2019 Society of Chemical Industry.
This paper analyzes the effect of caesium (Cs) concentration on seed germination, seedling growth, root uptake, and leaf uptake of Lactuca sativa to understand the potential transfer of the metal from contaminated soil to humans through the food chain. The results of germination experiments show that seed germination and seedling growth strongly depend on increasing Cs concentration, with a decrease in the number of germinated seeds compared to the control up to 13.6% and a reduction in seedling growth up to 10.3% at the highest Cs tested concentration (15 mM). Uptake experiments indicate a low transfer of Cs from soil to leaves and roots of the plants, ranging between 0.06% and 2.2%. The transfer is found to be a not-monotone function of soil potassium (K) content, with highest values corresponding to 1-2 mM K2SO4. Increasing concentrations of K lead to lower translocation of Cs from roots to leaves. Values above the average amount applied (20 and 40 mM K2SO4) almost stop the translocation, suggesting the use of a high amount of K2SO4 protects the food chain from Cs contamination.
Background and Aims: Anaesthesia for medical purposes was introduced in the 19th century. However, the physiological mode of anaesthetic drug actions on the nervous system remains unclear. One of the remaining questions is how these different compounds, with no structural similarities and even chemically inert elements such as the noble gas xenon, act as anaesthetic agents inducing loss of consciousness. The main goal here was to determine if anaesthetics affect the same or similar processes in plants as in animals and humans. Methods: A single-lens reflex camera was used to follow organ movements in plants before, during and after recovery from exposure to diverse anaesthetics. Confocal microscopy was used to analyse endocytic vesicle trafficking. Electrical signals were recorded using a surface AgCl electrode. Key Results: Mimosa leaves, pea tendrils, Venus flytraps and sundew traps all lost both their autonomous and touch-induced movements after exposure to anaesthetics. In Venus flytrap, this was shown to be due to the loss of action potentials under diethyl ether anaesthesia. The same concentration of diethyl ether immobilized pea tendrils. Anaesthetics also impeded seed germination and chlorophyll accumulation in cress seedlings. Endocytic vesicle recycling and reactive oxygen species (ROS) balance, as observed in intact Arabidopsis root apex cells, were also affected by all anaesthetics tested. Conclusions: Plants are sensitive to several anaesthetics that have no structural similarities. As in animals and humans, anaesthetics used at appropriate concentrations block action potentials and immobilize organs via effects on action potentials, endocytic vesicle recycling and ROS homeostasis. Plants emerge as ideal model objects to study general questions related to anaesthesia, as well as to serve as a suitable test system for human anaesthesia.
- MeSH
- akční potenciály účinky léků fyziologie MeSH
- anestetika škodlivé účinky MeSH
- Arabidopsis účinky léků fyziologie MeSH
- chlorofyl metabolismus MeSH
- Drosera účinky léků fyziologie MeSH
- Droseraceae účinky léků fyziologie MeSH
- ether škodlivé účinky MeSH
- homeostáza * MeSH
- hrách setý účinky léků fyziologie MeSH
- klíčení účinky léků MeSH
- Lepidium sativum účinky léků fyziologie MeSH
- listy rostlin účinky léků fyziologie MeSH
- Magnoliopsida účinky léků fyziologie MeSH
- Mimosa účinky léků fyziologie MeSH
- organely účinky léků fyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- transportní vezikuly účinky léků fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH