"SVV260416" Dotaz Zobrazit nápovědu
Over the last few years, aldo-keto reductase family 1 member C3 (AKR1C3) has been associated with the emergence of multidrug resistance (MDR), thereby hindering chemotherapy against cancer. In particular, impaired efficacy of the gold standards of induction therapy in acute myeloid leukaemia (AML) has been correlated with AKR1C3 expression, as this enzyme metabolises several drugs including anthracyclines. Therefore, the development of selective AKR1C3 inhibitors may help to overcome chemoresistance in clinical practice. In this regard, we demonstrated that Bruton's tyrosine kinase (BTK) inhibitors ibrutinib and acalabrutinib efficiently prevented daunorubicin (Dau) inactivation mediated by AKR1C3 in both its recombinant form as well as during its overexpression in cancer cells. This revealed a synergistic effect of BTK inhibitors on Dau cytotoxicity in cancer cells expressing AKR1C3 both exogenously and endogenously, thus reverting anthracycline resistance in vitro. These findings suggest that BTK inhibitors have a novel off-target action, which can be exploited against leukaemia through combination regimens with standard chemotherapeutics like anthracyclines.
- Publikační typ
- časopisecké články MeSH
Drug-induced cardiotoxicity is a serious problem associated with the administration of many drugs. MicroRNAs (miRNAs) have been reported to be affected by drugs and other xenobiotics, and the potential of miRNAs as biomarkers and diagnostic tools has been considered. In recent years, an association of certain miRNAs with the cardiotoxicity of some drugs, namely anthracyclines, bevacizumab, cyclosporine A and isoprenaline, has already been found. This review article summarizes available information about the changes in miRNA levels induced by cardiotoxic drugs. Three aspects are discussed: the altered expression of miRNAs in the heart upon treatment with cardiotoxic drugs, circulating miRNAs as promising early biomarkers of cardiotoxicity, and the potential of miRNAs in the prevention and/or attenuation of drug-induced cardiotoxicity. The targeted changes in the level of certain miRNAs by antagomiRs and miRNA mimics are also described and evaluated. In addition, the cardioprotective mechanism of various natural compounds via their effect on miRNA levels are examined.
Sesquiterpenes, the main components of plant essential oils, are bioactive compounds with numerous health-beneficial activities. Sesquiterpenes can interact with concomitantly administered drugs due to the modulation of drug-metabolizing enzymes (DMEs). The aim of this study was to evaluate the modulatory effects of six sesquiterpenes (farnesol, cis-nerolidol, trans-nerolidol, α-humulene, β-caryophyllene, and caryophyllene oxide) on the expression of four phase I DMEs (cytochrome P450 3A4 and 2C, carbonyl reductase 1, and aldo-keto reductase 1C) at both the mRNA and protein levels. For this purpose, human precision-cut liver slices (PCLS) prepared from 10 patients and transfected HepG2 cells were used. Western blotting, quantitative real-time PCR and reporter gene assays were employed in the analyses. In the reporter gene assays, all sesquiterpenes significantly induced cytochrome P450 3A4 expression via pregnane X receptor interaction. However in PCLS, their effects on the expression of all the tested DMEs at the mRNA and protein levels were mild or none. High inter-individual variabilities in the basal levels as well as in modulatory efficacy of the tested sesquiterpenes were observed, indicating a high probability of marked differences in the effects of these compounds among the general population. Nevertheless, it seems unlikely that the studied sesquiterpenes would remarkably influence the bioavailability and efficacy of concomitantly administered drugs.
- MeSH
- aldo-keto reduktasy metabolismus MeSH
- buňky Hep G2 MeSH
- cytochrom P-450 CYP3A metabolismus MeSH
- farnesol farmakologie MeSH
- hepatocyty metabolismus MeSH
- játra enzymologie MeSH
- karbonylreduktasa (NADPH) metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- metabolická clearance MeSH
- monocyklické seskviterpeny farmakologie MeSH
- polycyklické seskviterpeny farmakologie MeSH
- pregnanový X receptor agonisté metabolismus MeSH
- receptory aromatických uhlovodíků agonisté metabolismus MeSH
- rodina 2 cytochromů P450 metabolismus MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- seskviterpeny farmakologie MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Due to anthelmintic resistance problems, there is a need to discover and develop new drugs for the treatment and control of economically important and pathogenic nematodes of livestock animals. With this focus in mind, we screened 236 compounds from a library (called the 'Kurz-box') representing chemically diverse classes such as heterocyclic compounds (e.g. thiazoles, pyrroles, quinolines, pyrimidines, benzo[1,4]diazepines), hydoxamic acid-based metalloenzyme inhibitors, peptidomimetics (bis- and tris-pyrimidoneamides, alkoxyamides) and various intermediates on Haemonchus contortus, one of the most important parasitic nematodes of ruminants. METHODS: In the present study, we tested these compounds, and measured the inhibition of larval motility and development of exsheathed third-stage (xL3) and fourth-stage (L4) larvae of H. contortus using an optimised, whole-organism phenotypic screening assay. RESULTS: Of the 236 compounds, we identified two active compounds (called BLK127 and HBK4) that induced marked phenotypic changes in the worm in vitro. Compound BLK127 induced an 'eviscerated' phenotype in the xL3 stage and also inhibited L4 development. Compound HBK4 exerted a 'curved' phenotype in both xL3s and L4s. CONCLUSIONS: The findings from this study provide a basis for future work on the chemical optimisation of these compounds, on assessing the activity of optimised compounds on adult stages of H. contortus both in vitro and in vivo (in the host animal) and against other parasitic worms of veterinary and medical importance.
- MeSH
- anthelmintika chemie farmakologie MeSH
- fenotyp MeSH
- Haemonchus účinky léků růst a vývoj MeSH
- inhibiční koncentrace 50 MeSH
- larva účinky léků růst a vývoj MeSH
- preklinické hodnocení léčiv MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
KEY MESSAGE: Vanadium compounds increased the content and release of distinct isoflavones in a Trifolium pratense suspension culture. Regarding transport-mechanism inhibitors, the process was mostly facilitated by ABC proteins and vesicular transport. The transport of isoflavones and other secondary metabolites is an important part of metabolism within plants and cultures in vitro regarding their role in defence against various abiotic and biotic stressors. This research focuses on the way how to increase production and exudation of isoflavones by application of chemical elicitor and the basic identification of their transport mechanisms across cell membranes. The release of five isoflavones (genistin, genistein, biochanin A, daidzein, and formononetin) into a nutrient medium was determined in a Trifolium pratense var. DO-8 suspension culture after two vanadium compound treatments and cultivation for 24 and 48 h. The NH4VO3 solution caused a higher concentration of isoflavones in the medium after 24 h. This increased content of secondary metabolites was subsequently suppressed by distinct transport-mechanism inhibitors. The transport of isoflavones in T. pratense was mostly affected by ABC inhibitors from the multidrug-resistance-associated protein subfamily, but the genistein concentration in the medium was lower after treatment with multidrug-resistance protein subfamily inhibitors. Brefeldin A, which blocks vesicular transport, also decreased the concentration of some isoflavones in the nutrient medium.
Public interest in natural therapies has increased significantly over past decades. Herbs and herbal products are extensively consumed worldwide and they are generally considered as safe. However, this may not always be true as many cases of herb-induced liver injury are reported every year. The liver is a frequent target tissue of toxicity from all classes of toxicants as liver structure and function predispose it to high sensitivity to xenobiotics. The present review is focused on the hepatotoxic properties of monoterpenes and sesquiterpenes, plant secondary metabolites that represent the major components of essential oils wildly used in folk medicines, pharmaceutical industry and cosmetics. Most of these terpenes easily enter the human body by oral absorption, penetration through the skin, or inhalation leading to measurable blood concentrations. Several studies showed that some monoterpenes (e.g., pulegone, menthofuran, camphor, and limonene) and sesquiterpenes (e.g., zederone, germacrone) exhibited liver toxicity, which is mainly based on reactive metabolites formation, increased concentration of reactive oxygen species and impaired antioxidant defense. There is a high probability that many other terpenes, without sufficiently known metabolism and effects in human liver, could also exert hepatotoxicity. Especially terpenes, that are important components of essential oils with proved hepatotoxicity, should deserve more attention. Intensive research in terpenes metabolism and toxicity represent the only way to reduce the risk of liver injury induced by essential oils and other terpenes-containing products.
- MeSH
- játra účinky léků metabolismus MeSH
- lékové postižení jater etiologie MeSH
- lidé MeSH
- monoterpeny chemie toxicita MeSH
- oleje prchavé chemie toxicita MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostliny chemie metabolismus MeSH
- seskviterpeny chemie toxicita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH