"TN01000013" Dotaz Zobrazit nápovědu
Alzheimer's disease (AD) is a progressive brain disorder characterized by extracellular amyloid-β (Aβ) plaques, intracellular neurofibrillary tangles formed by hyperphosphorylated Tau protein and neuroinflammation. Previous research has shown that obesity and type 2 diabetes mellitus, underlined by insulin resistance (IR), are risk factors for neurodegenerative disorders. In this study, obesity-induced peripheral and central IR and inflammation were studied in relation to AD-like pathology in the brains and periphery of APP/PS1 mice, a model of Aβ pathology, fed a high-fat diet (HFD). APP/PS1 mice and their wild-type controls fed either a standard diet or HFD were characterized at the ages of 3, 6 and 10 months by metabolic parameters related to obesity via mass spectroscopy, nuclear magnetic resonance, immunoblotting and immunohistochemistry to quantify how obesity affected AD pathology. The HFD induced substantial peripheral IR leading to central IR. APP/PS1-fed HFD mice had more pronounced IR, glucose intolerance and liver steatosis than their WT controls. The HFD worsened Aβ pathology in the hippocampi of APP/PS1 mice and significantly supported both peripheral and central inflammation. This study reveals a deleterious effect of obesity-related mild peripheral inflammation and prediabetes on the development of Aβ and Tau pathology and neuroinflammation in APP/PS1 mice.
- MeSH
- Alzheimerova nemoc * etiologie MeSH
- amyloidní beta-protein MeSH
- diabetes mellitus 2. typu * MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- inzulinová rezistence * MeSH
- myši MeSH
- neurozánětlivé nemoci MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The heritable component of schizophrenia (SCH) as a polygenic trait is represented by numerous variants from a heterogeneous group of genes each contributing a relatively small effect. Various SNPs have already been found and analyzed in genes encoding the NMDAR subunits. However, less is known about genetic variations of genes encoding the AMPA and kainate receptor subunits. We analyzed sixteen iGluR genes in full length to determine the sequence variability of iGluR genes. Our aim was to describe the rate of genetic variability, its distribution, and the co-occurrence of variants and to identify new candidate risk variants or haplotypes. The cumulative effect of genetic risk was then estimated using a simple scoring model. GRIN2A-B, GRIN3A-B, and GRIK4 genes showed significantly increased genetic variation in SCH patients. The fixation index statistic revealed eight intronic haplotypes and an additional four intronic SNPs within the sequences of iGluR genes associated with SCH (p < 0.05). The haplotypes were used in the proposed simple scoring model and moreover as a test for genetic predisposition to schizophrenia. The positive likelihood ratio for the scoring model test reached 7.11. We also observed 41 protein-altering variants (38 missense variants, four frameshifts, and one nonsense variant) that were not significantly associated with SCH. Our data suggest that some intronic regulatory regions of iGluR genes and their common variability are among the components from which the genetic predisposition to SCH is composed.
- Publikační typ
- časopisecké články MeSH
Designing optimal (neo)adjuvant therapy is a crucial aspect of the treatment of non-small-cell lung carcinoma (NSCLC). Standard methods of chemotherapy, radiotherapy, and immunotherapy represent effective strategies for treatment. However, in some cases with high metastatic activity and high levels of circulating tumour cells (CTCs), the efficacy of standard treatment methods is insufficient and results in treatment failure and reduced patient survival. CTCs are seen not only as an isolated phenomenon but also a key inherent part of the formation of metastasis and a key factor in cancer death. This review discusses the impact of NSCLC therapy strategies based on a meta-analysis of clinical studies. In addition, possible therapeutic strategies for repression when standard methods fail, such as the administration of low-toxicity natural anticancer agents targeting these phenomena (curcumin and flavonoids), are also discussed. These strategies are presented in the context of key mechanisms of tumour biology with a strong influence on CTC spread and metastasis (mechanisms related to tumour-associated and -infiltrating cells, epithelial-mesenchymal transition, and migration of cancer cells).
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Human papillomavirus (HPV) has been shown to adversely affect human reproduction. We aimed to evaluate the prevalence of human papillomavirus (HPV) infection in men and its correlation with semen parameters and reproductive outcomes. METHODS: Semen samples and penile swabs were collected from potential sperm donors (SD, n = 97) and male partners of infertile couples (IM, n = 328). The presence of HPV DNA in semen samples and penile swabs was analyzed. Associations between hrHPV positive status and fertility outcomes as well as socio-behavioral and health characteristics were evaluated using the R software package. RESULTS: High-risk HPV (hrHPV) genotypes were detected in 28.9% of SD and 35.1% of IM (P = 0.312). Penile swabs were more frequently positive for hrHPV genotypes than semen samples in both IM (32.3% vs. 11.9%, P < 0.001) and SD (26.8% vs. 6.2%, P = 0.006). Men with hrHPV positive semen samples had lower semen volume (median volume 2.5 ml vs. 3 ml, P = 0.009), sperm concentration (median concentration 16 × 106/ml vs. 31 × 106/ml, P = 0.009) and total sperm count (median count 46 × 106 vs. 82 × 106, P = 0.009) than men with hrHPV negative samples. No association was identified between penile hrHPV status and semen parameters. CONCLUSIONS: Our findings indicate that penile HPV infection is common in both potential sperm donors and men from infertile couples. Although HPV positivity is higher in penile swabs, only HPV infection in semen samples affects sperm parameters. However, there was no association between hrHPV positivity in semen and fertility outcomes including abortion rate.
- MeSH
- analýza spermatu MeSH
- charakteristiky rodiny MeSH
- dárci tkání statistika a číselné údaje MeSH
- dospělí MeSH
- fertilizace in vitro statistika a číselné údaje MeSH
- infekce papilomavirem komplikace diagnóza epidemiologie MeSH
- infertilita komplikace diagnóza epidemiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- Papillomaviridae fyziologie MeSH
- prognóza MeSH
- sperma fyziologie virologie MeSH
- těhotenství MeSH
- výsledek těhotenství epidemiologie MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Synchronous cell populations are commonly used for the analysis of various aspects of cellular metabolism at specific stages of the cell cycle. Cell synchronization at a chosen cell cycle stage is most frequently achieved by inhibition of specific metabolic pathway(s). In this respect, various protocols have been developed to synchronize cells in particular cell cycle stages. In this review, we provide an overview of the protocols for cell synchronization of mammalian cells based on the inhibition of synthesis of DNA building blocks-deoxynucleotides and/or inhibition of DNA synthesis. The mechanism of action, examples of their use, and advantages and disadvantages are described with the aim of providing a guide for the selection of suitable protocol for different studied situations.
- MeSH
- buněčné dělení * MeSH
- buněčný cyklus * MeSH
- DNA antagonisté a inhibitory biosyntéza MeSH
- lidé MeSH
- replikace DNA * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cell quantification is widely used both in basic and applied research. A typical example of its use is drug discovery research. Presently, plenty of methods for cell quantification are available. In this review, the basic techniques used for cell quantification, with a special emphasis on techniques based on fluorescent DNA dyes, are described. The main aim of this review is to guide readers through the possibilities of cell quantification with various methods and to show the strengths and weaknesses of these methods, especially with respect to their sensitivity, accuracy, and length. As these methods are frequently accompanied by an analysis of cell proliferation and cell viability, some of these approaches are also described.
Alzheimer's disease (AD) is a chronic neurodegenerative disease associated with the overproduction and accumulation of amyloid-β peptide and hyperphosphorylation of tau proteins in the brain. Despite extensive research on the amyloid-based mechanism of AD pathogenesis, the underlying cause of AD is not fully understood. No disease-modifying therapies currently exist, and numerous clinical trials have failed to demonstrate any benefits. The recent discovery that the amyloid-β peptide has antimicrobial activities supports the possibility of an infectious aetiology of AD and suggests that amyloid-β plaque formation might be induced by infection. AD patients have a weakened blood-brain barrier and immune system and are thus at elevated risk of microbial infections. Such infections can cause chronic neuroinflammation, production of the antimicrobial amyloid-β peptide, and neurodegeneration. Various pathogens, including viruses, bacteria, fungi, and parasites have been associated with AD. Most research in this area has focused on individual pathogens, with herpesviruses and periodontal bacteria being most frequently implicated. The purpose of this review is to highlight the potential role of multi-pathogen infections in AD. Recognition of the potential coexistence of multiple pathogens and biofilms in AD's aetiology may stimulate the development of novel approaches to its diagnosis and treatment. Multiple diagnostic tests could be applied simultaneously to detect major pathogens, followed by anti-microbial treatment using antiviral, antibacterial, antifungal, and anti-biofilm agents.
Flavonoids are common plant natural products able to suppress ROS-related damage and alleviate oxidative stress. One of key mechanisms, involved in this phenomenon is chelation of transition metal ions. From a physiological perspective, iron is the most significant transition metal, because of its abundance in living organisms and ubiquitous involvement in redox processes. The chemical, pharmaceutical, and biological properties of flavonoids can be significantly affected by their interaction with transition metal ions, mainly iron. In this review, we explain the interaction of various flavonoid structures with Fe(II) and Fe(III) ions and critically discuss the influence of chelated ions on the flavonoid biochemical properties. In addition, specific biological effects of their iron metallocomplexes, such as the inhibition of iron-containing enzymes, have been included in this review.
- MeSH
- antioxidancia chemie farmakologie MeSH
- chelátory chemie farmakologie MeSH
- flavonoidy chemie MeSH
- hem chemie MeSH
- ionty chemie metabolismus MeSH
- komplexní sloučeniny chemie MeSH
- lidé MeSH
- molekulární struktura MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- železo chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Survivin, as an antiapoptotic protein often overexpressed in cancer cells, is a logical target for potential cancer treatment. By overexpressing survivin, cancer cells can avoid apoptotic cell death and often become resistant to treatments, representing a significant obstacle in modern oncology. A survivin suppressor, an imidazolium-based compound known as YM-155, is nowadays studied as an attractive anticancer agent. Although survivin suppression by YM-155 is evident, researchers started to report that YM-155 is also an inducer of DNA damage introducing yet another anticancer mechanism of this drug. Moreover, the concentrations of YM-155 for DNA damage induction seems to be far lower than those needed for survivin inhibition. Understanding the molecular mechanism of action of YM-155 is of vital importance for modern personalized medicine involving the selection of responsive patients and possible treatment combinations. This review focuses mainly on the documented effects of YM-155 on DNA damage signaling pathways. It summarizes up to date literature, and it outlines the molecular mechanism of YM-155 action in the context of the DNA damage field.
- MeSH
- dvouřetězcové zlomy DNA účinky léků MeSH
- imidazoly farmakologie MeSH
- lidé MeSH
- naftochinony farmakologie MeSH
- poškození DNA účinky léků MeSH
- survivin metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH