Automation and miniaturization
Dotaz
Zobrazit nápovědu
A new portable CE instrument is presented. The instrument features the concurrent separation of anions and cations in parallel channels. Each channel has a separate buffer container to allow independent optimization of separation conditions. The microfluidics circuit is based on off-the-shelf parts, and can be easily replicated; only four valves are present in the design. The system employs a miniature automated syringe pump, which can apply both positive and negative pressures (-100 to 800 kPa). The application of negative pressure allows a semi-automatic mode of operation for introducing volume-limited samples. The separations are performed in a thermostatted compartment for improved reproducibility in field conditions. The instrument has a compact design, with all components, save for batteries and power supplies, arranged in a briefcase with dimensions of 52 × 34 × 18 cm and a weight of less than 15 kg. The system runs automatically and is controlled by a purpose-made graphical user interface on a connected computer. For demonstration, the system was successfully employed for the concurrent separation and analysis of inorganic cations and anions in sediment porewater samples from Lake Baldegg in Switzerland and of metal ions in a sample from the tailing pond of an abandoned mine in Argentina.
This work describes the method for total antioxidant capacity (TAC) and/or total content of phenolics (TCP) analysis in wines using microdialysis online-coupled with amperometric detection using a carbon microfiber working electrode. The system was tested on 10 selected wine samples, and the results were compared with total reactive antioxidant potential (TRAP), oxygen radical absorbance capacity (ORAC), and chemiluminescent determination of total antioxidant capacity (CL-TAC) methods using Trolox and catechin as standards. Microdialysis online-coupled with amperometric detection gives similar results to the widely used cyclic voltammetry methodology and closely correlates with ORAC and TRAP. The problem of electrode fouling is overcome by the introduction of an electrochemical cleaning step (1-2 min at the potential of 0 V vs Ag/AgCl). Such a procedure is sufficient to fully regenerate the electrode response for both red and white wine samples as well as catechin/Trolox standards. The appropriate size of microdialysis probes enables easy automation of the electrochemical TAC/TCP measurement using 96-well microtitration plates.
A fully automated method for the determination of lovastatin in dietary supplements containing red yeast rice has been developed. It uses a sequential injection analysis system combined with solid-phase extraction applying highly selective molecularly imprinted polymer sorbent. A miniaturized column for on-line extraction was prepared by packing 4.5 mg of the sorbent in a 5.0 × 2.5-mm-i.d. cartridge, which was used in the flow manifold. Sequential injection analysis manifold enabled all steps of lovastatin extraction and continuous spectrophotometric detection at 240 nm. A limit of detection of 60 μg g-1, a limit of quantitation of 200 μg g-1, and a linear calibration range of 200-2000 μg g-1 were achieved. Intra-day and inter-day precision values (RSD) were ≤ 6.7% and ≤ 4.9%, respectively, and method recovery values of spiked red yeast rice extracts at 200, 1000, and 2000 μg g-1 concentration levels were 82.9, 95.2, and 87.7%. Our method was used for determination of lovastatin lactone in four dietary supplements containing red yeast rice as a natural source of lovastatin, also known as monacolin K. The extracted samples were subsequently analyzed by the reference UHPLC-MS/MS method. Statistical comparison of results (F test, t test, α = 0.05) obtained by both methods did not reveal significant difference. A substantial advantage of the new automated approach is high sample throughput thanks to the analysis time of 7.5 min, miniaturization via down-scaling the extraction column, and smaller sample and solvent consumption, as well as reduced generation of waste. Graphical abstract ᅟ.
- MeSH
- anticholesteremika analýza MeSH
- biologické přípravky analýza MeSH
- design vybavení MeSH
- extrakce na pevné fázi přístrojové vybavení metody MeSH
- limita detekce MeSH
- lovastatin analýza MeSH
- molekulový imprinting přístrojové vybavení metody MeSH
- polymery chemie MeSH
- potravní doplňky analýza MeSH
- průtoková injekční analýza přístrojové vybavení metody MeSH
- spektrofotometrie ultrafialová přístrojové vybavení metody MeSH
- tandemová hmotnostní spektrometrie přístrojové vybavení metody MeSH
- vysokoúčinná kapalinová chromatografie přístrojové vybavení metody MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
The history of liquid chromatography started more than a century ago and miniaturization and automation are two leading trends in this field. Nanocolumn liquid chromatography (nano LC) and largely synonymous capillary liquid chromatography (capillary LC) are the most recent results of this process where miniaturization of column dimensions and sorbent particle size play crucial role. Very interesting results achieved in the research of extremely miniaturized LC columns at the end of the last century lacked distinctive raison d'être and only advances in mass spectrometry brought a real breakthrough. Configuration of nano LC-electrospray ionization mass spectrometry (LC-ESI-MS) has become a basic tool in bioanalytical chemistry, especially in proteomics. This review discusses and summarizes past and current trends in the realization of nano liquid chromatography (nano LC) platforms. Special attention is given to the mobile phase delivery under nanoflow rates (isocratic, gradient) and sample injection to the nanocolumn. Available detection techniques applied in nano LC separations are also briefly discussed. We followed up the key themes from the original scientific reports over gradual improvements up to the contemporary commercial solutions.
This article aims to provide an overview on the transition from earlier laboratory automation using analytical flow approaches toward today's applications of flow methodologies, recent developments, and future trends. The article is directed to flow practitioners while serving as a valuable reference to newcomers in the field in providing insight into flow techniques and conceptual differences in operation across the distinct flow generations. In the focus are the recently developed and complementary techniques Lab-On-Valve and Lab-In-Syringe. In the following, a brief comparison of the different application niches and contributions of flow techniques to past and modern analytical chemistry is given, including (i) the development of sample pretreatment approaches, (ii) the potential applicability for in-situ/on-site monitoring of environmental compartments or technical processes, (iii) the ability of miniaturization of laboratory chemistry, (iv) the unique advantages for implementation of kinetic assays, and finally (v) the beneficial online coupling with scanning or separation analytical techniques. We also give a critical comparison to alternative approaches for automation based on autosamplers and robotic systems. Finally, an outlook on future applications and developments including 3D prototyping and specific needs for further improvements is given. Graphical abstract ᅟ.
- Publikační typ
- časopisecké články MeSH
New generation of sequential injection analysis (SIA) called sequential injection chromatography (SIC) has already been consolidated as a good alternative of high performance liquid chromatography (HPLC) for fast analysis of simple samples. Benefits of flow methods are automation, miniaturization and low sample and mobile phase consumption. Implementation of short monolithic chromatographic column into SIA opens new area-on-line chromatographic separation of multi-compound sample in low-pressure flow system, with the advantage of flow programming and possibility of sample manipulation. In the presented review the potential of SIC and its comparison with HPLC for determination of pharmaceutical mixtures is discussed and outlines past and recent trends focused on separation with SIC.
- MeSH
- chromatografie metody přístrojové vybavení MeSH
- financování organizované MeSH
- lékové formy MeSH
- lidé MeSH
- průtoková injekční analýza metody přístrojové vybavení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
... Quantitative Measurements 342 Methods of Assessment 342 Selection and Analysis 342 Automated Methods ... ... Electrical Activity at the Endplate 434 Miniature Endplate Potential 434 -- Events Related to Nerve Action ...
4th ed. xxix, 1146 s. : il., tab. ; 26 cm + 1 CD-ROM
- MeSH
- elektrodiagnostika metody MeSH
- elektromyografie MeSH
- nemoci míchy diagnóza MeSH
- nervové vedení fyziologie MeSH
- nervový přenos fyziologie MeSH
- neuromuskulární nemoci diagnóza MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- neurologie
- diagnostika
- NLK Publikační typ
- kolektivní monografie
The emergence of drug-resistant bacteria and new or changing infectious pathogens is an important public health problem as well as a serious socioeconomic concern. Immunomagnetic separation-based methods create new possibilities for rapidly recognizing many of these pathogens. Nanomaterial-based techniques including fluorescent labeling by quantum dots as well as immunoextraction by magnetic particles are excellent tools for such purposes. Moreover, the combination with capillary electrophoresis in miniaturized microchip arrangement brings numerous benefits such as fast and rapid analysis, low sample consumption, very sensitive electrochemical and fluorescent detection, portable miniaturized instrumentation, and rapid and inexpensive device fabrication. Here the use of superparamagnetic particle-based fully automated instrumentation to isolate pathogen Staphylococcus aureus and its Zn(II)-containing proteins (Zn-proteins) is reported using a robotic pipetting system speeding up the sample preparation and enabling to analyze 48 real samples within 6 h. Cell lysis and Zn-protein extractions were obtained from a minimum of 100 cells with the sufficient yield for SDS-PAGE (several tens ng of proteins).
- MeSH
- bakteriální proteiny izolace a purifikace MeSH
- elektroforéza kapilární metody MeSH
- elektroforéza mikročipová metody MeSH
- imunomagnetická separace metody MeSH
- kvantové tečky * MeSH
- Staphylococcus aureus chemie izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The patch clamp technique, developed in late 1970s, started a new period of experimental cardiac electrophysiology enabling measurement of ionic currents on isolated cardiomyocytes down to the level of single channels. Since that time, the technique has been substantially improved by development of several upgraded modifications providing so far unavailable data (e.g. action potential clamp, dynamic clamp, high-resolution scanning patch clamp), or facilitating the patch clamp technique by increasing its efficiency (planar patch clamp, automated patch clamp). The current review summarizes the leading new patch clamp based techniques used in cardiac cellular electrophysiology, their principles and prominent related papers.
- MeSH
- akční potenciály fyziologie MeSH
- design vybavení trendy MeSH
- gating iontového kanálu fyziologie MeSH
- iontové kanály metabolismus MeSH
- lidé MeSH
- membránové potenciály fyziologie MeSH
- metoda terčíkového zámku přístrojové vybavení trendy MeSH
- mikroelektrody trendy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Phthalates are endocrine disruptors frequently occurring in the general and industrial environment and in many industrial products. Moreover, they are also suspected of being carcinogenic, teratogenic, and mutagenic, and they show diverse toxicity profiles depending on their structures. The European Union and the United States Environmental Protection Agency (US EPA) have included many phthalates in the list of priority substances with potential endocrine-disrupting action. They are: dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), diethylhexyl phthalate (DEHP), di-iso-nonyl phthalate (DINP), di-iso-decyl phthalate (DIDP), di-n-decyl phthalate (DnDP), and dioctyl phthalate (DOP). There is an ever-increasing demand for new analytical methods suitable for monitoring different phthalates in various environmental, biological, and other matrices. Separation and spectrometric methods are most frequently used. However, modern electroanalytical methods can also play a useful role in this field because of their high sensitivity, reasonable selectivity, easy automation, and miniaturization, and especially low investment and running costs, which makes them suitable for large-scale monitoring. Therefore, this review outlines possibilities and limitations of various analytical methods for determination of endocrine-disruptor phthalate esters in various matrices, including somewhat neglected electroanalytical methods.