Dissolution performance
Dotaz
Zobrazit nápovědu
In vitro dissolution testing is commonly performed to ensure that oral solid dosage medicines are of high quality and will achieve their targeted in vivo performance. However, this testing is time and material consuming. Therefore, pharmaceutical companies have been developing predictive dissolution models (PDMs) for drug product release based on fast at- and/or on-line measurements, including real-time release testing of dissolution (RTRT-D). Recently, PDMs have seen acceptance by major regulatory bodies as release tests for the dissolution critical quality attribute. In this paper, several methodologies are described to develop and validate a fit-for-purpose model, then to implement it as a surrogate release test for dissolution. These approaches are further exemplified by real-life case studies, which demonstrate that PDMs for release are not only viable but more sustainable than in vitro dissolution testing and can significantly accelerate drug product release. The rise of continuous manufacturing within the pharmaceutical industry further favors the implementation of real-time release testing. Therefore, a steep uptake of PDMs for release is expected once this methodology is globally accepted. To that end, it is advantageous for global regulators and pharmaceutical innovators to coalesce around a harmonized set of expectations for development, validation, implementation, and lifecycle of PDMs as part of drug product release testing.
- MeSH
- aplikace orální MeSH
- farmaceutická chemie metody MeSH
- léčivé přípravky chemie aplikace a dávkování MeSH
- lidé MeSH
- příprava léků MeSH
- rozpustnost MeSH
- schvalování léčiv MeSH
- uvolňování léčiv * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus-Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium), we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.
Meloxicam (MLX) is a poorly soluble drug exhibiting strong hydrophobicity. This combination of properties makes dissolution enhancement by particle size reduction ineffective; therefore, combined formulation approaches are required. Various approaches were investigated in this study, including milling, solid dispersions, and self-emulsified lipid formulations. Whereas milling studies of MLX and its co-milling with various polymers have been reported in recent literature, this study is focused on investigating the dissolution kinetics of particulate formulations obtained by co-milling MLX with sodium lauryl sulfate (SLS) in a planetary ball mill with 5-25 wt.% SLS content. The effects of milling time and milling ball size were also investigated. No significant reduction in drug crystallinity was observed under the investigated milling conditions according to XRD data. For the dissolution study, we used an open-loop USP4 dissolution apparatus, and recorded dissolution profiles were fitted according to the Weibull model. The Weibull parameters and a novel criterion-surface utilization factor-were used to evaluate and discuss the drug release from the perspective of drug particle surface changes throughout the dissolution process. The most effective co-milling results were achieved using smaller balls (2 mm), with a co-milling time of up to 15 min SLS content of up to 15 wt.% to increase the dissolution rate by approximately 100 times relative to the physical mixture reference. The results suggest that for hydrophobic drugs, particle performance during dissolution is very sensitive to surface properties and not only to particle size. Co-milling with SLS prepares the surface for faster drug release than that achieved with direct mixing.
- Publikační typ
- časopisecké články MeSH
Different batches of atorvastatin, represented by two immediate release formulation designs, were studied using a novel dynamic dissolution apparatus, simulating stomach and small intestine. A universal dissolution method was employed which simulated the physiology of human gastrointestinal tract, including the precise chyme transit behavior and biorelevant conditions. The multicompartmental dissolution data allowed direct observation and qualitative discrimination of the differences resulting from highly pH dependent dissolution behavior of the tested batches. Further evaluation of results was performed using IVIVC/IVIVR development. While satisfactory correlation could not be achieved using a conventional deconvolution based-model, promising results were obtained through the use of a nonconventional approach exploiting the complex compartmental dissolution data.
- MeSH
- atorvastatin chemie terapeutické užití MeSH
- farmaceutická chemie MeSH
- gastrointestinální trakt účinky léků fyziologie MeSH
- lidé MeSH
- tenké střevo účinky léků MeSH
- uvolňování léčiv * MeSH
- zdravotnické prostředky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Commonly applied approaches to enhance the dissolution properties of low water-soluble crystalline active pharmaceutical ingredients (APIs) include their amorphization by incorporation into a polymeric matrix and the formation of amorphous solid dispersions, or blending APIs with low-molecular-weight excipients and the formation of a co-amorphous system. This study focused on the preparation and characterization of binary (consisting of indomethacin (IND) and polymer - copovidone (PVP VA 64), as a carrier, or amino acid - L-arginine (ARG), as a co-former) and ternary (comprising the same API, polymer, and amino acid) formulations. Formulations were produced by ball milling (BM) and/or hot-melt extrusion (HME), and extensive physicochemical characterization was performed. Specifically, the physicochemical and solid-state properties of a model IND-ARG system incorporated into a polymeric matrix of PVP VA 64 by HME and BM as well as by combined BM/HME method together with the impact of the preparation strategy on the dissolution profiles and long-term physical stability were investigated. Ball-milled binary and ternary formulations were found to be amorphous. The residual crystals corresponding to IND-ARG salt were identified in the ternary formulations produced via HME. Despite the presence of a crystalline phase, dissolution tests showed that ternary systems prepared by HME exhibited improved IND solubility when compared to pure crystalline IND and their corresponding physical mixture. None of the binary and ternary formulations that were initially fully amorphous did undergo recrystallization during the entire period of preservation (minimum of 12 months) in dry conditions at 25 °C.
- MeSH
- arginin * MeSH
- indomethacin * MeSH
- polymery MeSH
- rozpustnost MeSH
- vinylové sloučeniny MeSH
- Publikační typ
- časopisecké články MeSH
Plant mucilages are commonly employed as excipients in pharmaceutical manufacturing. Ocimum basilicum (Lamiaceae family), a source of hydrophilic mucilage referred herein as Ocicum, was evaluated for the solubility enhancer of a model drug, aceclofenac, in solid dispersions prepared using different methods. Polymer was extracted from O. basilicum and solid dispersions of aceclofenac were fabricated with Ocicum or Poloxamer 407 using polymer-to-drug ratios of 1:1, 1:2 and 1:3 utilizing solvent evaporation, lyophilization and melt methods. Ocicum was evaluated for its safety via acute toxicity study including different biochemical and hematological parameters including liver and kidney profiles. Moreover, different characterization studies including melting-point, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and differential thermal analysis (TGA) were used for evaluation of polymer and solid dispersions. Furthermore, solubility and dissolution studies were performed to confirm solubility enhancement. Ocicum was found to be safer, and different characterization studies confirmed the purity of the compounds. In addition, Ocicum exhibited up to 6.27-fold enhanced solubility as compared to pure aceclofenac; similarly, 4.51-fold increased solubility by the synthetic polymer in their respective solid dispersions was shown. Furthermore, Ocicum-based solid dispersions showed substantial improvement in dissolution of aceclofenac. Therefore, it can be concluded from the above-mentioned results that Ocicum might be used as an economical natural oral delivery carrier alternative to the synthetic polymers.
- Publikační typ
- časopisecké články MeSH
- MeSH
- centrální nervový systém patofyziologie MeSH
- disociační poruchy etiologie patofyziologie MeSH
- hyperkinetická porucha * psychologie MeSH
- lidé MeSH
- mozeček fyziologie patofyziologie patologie MeSH
- neurologie dějiny metody trendy MeSH
- posturální rovnováha MeSH
- psychomotorický výkon MeSH
- reflex * MeSH
- vývojová biologie metody trendy MeSH
- vývojové poruchy u dětí * klasifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
The aim of this study was to improve rivaroxaban water-solubility by cocrystal preparation and to understand this process. The screening with water-soluble coformers was performed via both mechanochemical and solution-mediated techniques. Two cocrystals of rivaroxaban with malonic acid and oxalic acid were prepared, and the structure of the cocrystal with oxalic acid was solved. Both cocrystals exhibit improved dissolution properties. The mechanism of the supersaturation maintenance was studied by in-situ Raman spectroscopy. The transformation into rivaroxaban dihydrate was identified as the critical step in the improved dissolution properties of both cocrystals. Moreover, the transformation kinetics and solubilization effects of the coformers were identified as responsible for the differences in the dissolution behavior of the cocrystals. In-vivo experiments proved that the use of cocrystal instead of form I of free API helped to increase the bioavailability ofrivaroxaban.
- MeSH
- finanční podpora výzkumu jako téma MeSH
- prazosin analýza chemie normy MeSH
- průtoková injekční analýza metody normy MeSH
- řízení kvality MeSH
- rozpustnost MeSH
- spektrofotometrie ultrafialová metody normy MeSH
- tablety MeSH
- techniky in vitro MeSH
- vysokoúčinná kapalinová chromatografie metody normy MeSH