Mosses Dotaz Zobrazit nápovědu
In order to assess whether nitrogen (N) loads in mosses reflect different land uses, 143 sites in North Rhine-Westphalia, the Weser-Ems Region and the Euro Region Nissa were sampled between 2000 and 2005. The data were analysed statistically with available surface information on land use and forest conditions. N bioaccumulation in mosses in the Weser-Ems Region with high densities of agricultural land use and livestock exceeded the concentrations in the more industrialised Euro Region Nissa. In all three study areas agricultural and livestock spatial densities were found to be positively correlated with N bioaccumulation in mosses. In North Rhine-Westphalia, the N concentrations in mosses was also moderately correlated with N concentrations in leaves and needles of forest trees. The moss method proved useful to assess the spatial patterns of N bioaccumulation due to land use.
- MeSH
- Bryophyta chemie MeSH
- dusík analýza MeSH
- ekosystém MeSH
- látky znečišťující vzduch analýza MeSH
- monitorování životního prostředí metody MeSH
- stromy * MeSH
- těžké kovy analýza MeSH
- zemědělství MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH
- Polsko MeSH
In recent decades, naturally growing mosses have been used successfully as biomonitors of atmospheric deposition of heavy metals and nitrogen. Since 1990, the European moss survey has been repeated at five-yearly intervals. In 2010, the lowest concentrations of metals and nitrogen in mosses were generally found in northern Europe, whereas the highest concentrations were observed in (south-)eastern Europe for metals and the central belt for nitrogen. Averaged across Europe, since 1990, the median concentration in mosses has declined the most for lead (77%), followed by vanadium (55%), cadmium (51%), chromium (43%), zinc (34%), nickel (33%), iron (27%), arsenic (21%, since 1995), mercury (14%, since 1995) and copper (11%). Between 2005 and 2010, the decline ranged from 6% for copper to 36% for lead; for nitrogen the decline was 5%. Despite the Europe-wide decline, no changes or increases have been observed between 2005 and 2010 in some (regions of) countries.
- MeSH
- Bryophyta chemie MeSH
- dusík analýza MeSH
- kadmium analýza MeSH
- kovy MeSH
- látky znečišťující vzduch analýza MeSH
- monitorování životního prostředí * MeSH
- nikl MeSH
- rtuť MeSH
- těžké kovy analýza MeSH
- železo MeSH
- znečištění ovzduší statistika a číselné údaje MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- MeSH
- Bryophyta * MeSH
- druhová specificita MeSH
- půda MeSH
- rašeliníky * MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Peatlands are one of the most important ecosystems due to their biodiversity and abundant organic compounds; therefore, it is important to observe how different plant species in peatlands react to changing environmental conditions. Sphagnum spp. are the main component of peatlands and are considered as the creator of conditions favorable for carbon storage in the form of peat. Sphagnum angustifolium and Sphagnum fallax are taxonomically very close species. To examine their adaptability to climate change, we studied the morphology and pigment content of these two species from environmental manipulation sites in Poland, where the environment was continuously manipulated for temperature and precipitation. The warming of peat was induced by using infrared heaters, whereas total precipitation was reduced by a curtain that cuts the nighttime precipitation. Morphology of S. angustifolium stayed under climate manipulation relatively stable. However, the main morphological parameters of S. fallax were significantly affected by precipitation reduction. Thus, this study indicates S. angustifolium is better adapted in comparison to S. fallax for drier and warmer conditions.
This study analyzed the impact of road transportation on the concentration of Zn, Ni, Pb, Co, and Cd in moss (Pleurozium schreberi). The study was carried out over five years near a national road running from the north to the east (Poland) in the area of Natura 2000 sites. Samples were collected at three significantly different locations: (1) near a sharp bend, (2) near a straight section of the road in a woodless area, and (3) in a slightly wooded area. At each location, moss samples were collected from sites situated 2, 4, 6, 8, 10, 12, and 14 m from the road edge. The highest Zn and Cd contents in the moss were recorded 6 m from the road edge near a sharp bend (where vehicles brake sharply and accelerate suddenly). At the same location, at a distance of 2 m, the highest Pb concentration was noted, and at a distance of 4 m from the road, the highest Ni concentration was noted. The Co concentration in the moss was the highest near the woodless straight section at a distance of 2 and 12 m from the road. The concentrations of Zn, Pb, Ni, Co (only at the woodless location), and Cd (at all locations) were significantly and negatively correlated with distance from the road.
- MeSH
- bioindikátory * MeSH
- doprava * MeSH
- mechy chemie MeSH
- monitorování životního prostředí metody MeSH
- těžké kovy chemie toxicita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Polsko MeSH
A passive biomonitoring survey using terrestrial mosses was performed in a heavily polluted industrial region on the border between Czechia and Poland in a regular grid of 41 sampling points. The concentrations of 38 elements were determined in the moss samples, using Neutron Activation Analysis (NAA). Simultaneously, air pollution modelling was performed using the Czech reference methodology Symos'97 for the year of the sampling (2015) and 3 years prior (2012) in order to compare the results of both the approaches and evaluate the credibility of the moss biomonitoring method. The NAA results were transformed according to the principles of compositional data analysis and assessed using hierarchical clustering on principal components. The resulting clusters were compared with the results of air pollution modelling using one-way analysis of variance. The association of determined clusters with the pollution from industrial sources was confirmed only for the results of the 2012 modelling. This validates the complementarity of the air pollution modelling and the moss biomonitoring, ascertains the moss biomonitoring as a valid method for long-term pollution assessment and confirms one of the fundamentals of moss biomonitoring, the reflection of the atmospheric conditions prevailing in the period before the sampling.
- MeSH
- biologický monitoring MeSH
- Bryophyta * MeSH
- látky znečišťující vzduch analýza MeSH
- mechy * MeSH
- monitorování životního prostředí MeSH
- těžké kovy analýza MeSH
- znečištění ovzduší analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
Ecological studies of peatland testate amoebae are generally based on totals of 150 individuals per sample. However, the suitability of this standard has never been assessed for alkaline habitats such as spring fens. We explored the differences in testate amoeba diversity between Sphagnum and brown-moss microhabitats at a mire site with a highly diversified moss layer which reflects the small-scale heterogeneity in groundwater chemistry. Relationships between sampling efficiency and sample completeness were explored using individual-based species accumulation curves and the effort required to gain an extra species was assessed. Testate amoeba diversity differed substantially between microhabitats, with brown mosses hosting on average twice as many species and requiring greater shell totals to reach comparable sample analysis efficiency as for Sphagnum. Thus, for samples from alkaline conditions an increase in shell totals would be required and even an overall doubling up to 300 individuals might be considered for reliable community description. Our small-scale data are likely not robust enough to provide an ultimate solution for the optimization of shell totals. However, the results proved that testate amoebae communities from acidic and alkaline environments differ sharply in both species richness and composition and they might call for different methodological approaches.
The mitogenome of the Orthotrichum speciousum (GenBank accession number KM288416) has a total length of 104,747 bp and consist of 40 protein-coding genes, 3 ribosomal RNA (rRNA) and 24 transfer RNA. The gene order is identical to other known moss mitogenomes.
PBDEs and PCBs are toxic, persistent organic pollutants (POPs), and the use of PCBs is forbidden, but they are still present in many environments and biota. 90-day assays were conducted with the moss Pleurozium schreberi transplanted from an uncontaminated control site to ten sites (rural and urban) selected in one of the most polluted regions of Upper Silesia in Poland. Native P. schreberi mosses were collected from the same ten polluted sites. Concentrations of PBDEs (28, 47, 66, 85, 99, 100, 153, 154, 183 and 209) and PCBs (28, 52, 101, 118, 138, 153, 180) were determined in all native and transplanted P. schreberi from all sites. Native P. schreberi contained the highest ΣPBDE and ΣPCB levels (63.6ngg-1 and 4.47pgg-1, respectively) when collected in the vicinity of a steel smelter. After 90 days of the experiment native and transplanted P. schreberi contained the highest concentrations of the same BDE 209 congener (88-91% of total PBDEs in the native mosses and 85-90% of the total PBDE burden in the transplants). The native and transplanted mosses from the industrial sites after 90 days of exposure contained significantly higher concentrations of all the examined PBDE and PCB congeners (except for 153 and 180) than mosses from rural sites. PBDE and PCB values were higher in native than in transplanted mosses after 90 days of exposure in both rural and industrial sites.
- MeSH
- halogenované difenylethery analýza MeSH
- mechy chemie MeSH
- monitorování životního prostředí MeSH
- polychlorované bifenyly analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
Glaciers and ice sheets are a peculiar biome with characteristic abiotic and biotic components. Mountain glaciers are predicted to decrease their volume and even to melt away within a few decades. Despite the threat of a disappearing biome, the diversity and the role of microscopic animals as consumers at higher trophic levels in the glacial biome still remain largely unknown. In this study, we report data on tardigrades and rotifers found in glacial mosses on Mount Stanley, Uganda, and describe a new tardigrade species. Adropion afroglacialis sp. nov. differs from the most similar species by having granulation on the cuticle, absence of cuticular bars under the claws, and a different macroplacoid length sequence. We also provide a morphological diagnosis for another unknown tardigrade species of the genus Hypsibius. The rotifers belonged to the families Philodinidae and Habrotrochidae. In addition, we discuss the diversity of microinvertebrates and potential role of tardigrades and rotifers on mountain glaciers as top consumers. As for any organism living apparently exclusively in glacial habitats on tropical glaciers, their extinction in the near future is inevitable, possibly before we can even discover their existence.