compost soil Dotaz Zobrazit nápovědu
The broad-spectrum herbicide glyphosate is one of the most widely used pesticides. Both glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), persist in waters; thus, their environmental fates are of interest. We investigated the influence of compost dose, sampling depth, moisture and saturated hydraulic conductivity (Ks) on the persistence of these substances. The amounts of AMPA quantified by triple quadrupole liquid chromatography-mass spectrometry (LC-QqQ-MS/MS) using isotopically labeled extraction standards were higher than those of glyphosate and differed among the samples. Both glyphosate and AMPA showed gradually decreasing concentrations with soil depth, and bootstrapped ANOVA showed significant differences between the contents of glyphosate and AMPA and their behavior related to different compost dosages and sampling depths. However, the compost dose alone did not cause significant differences among samples. Bayesian statistics revealed that the amounts of glyphosate and AMPA were both dependent on the sampling depth and compost dose, but differences were found when considering the physical factors of Ks and moisture. Glyphosate was influenced by moisture but not Ks, whereas AMPA was influenced by Ks but not moisture. Importantly, we found behavioral differences between glyphosate and its major metabolite, AMPA, related to the physical properties of Ks and moisture.
The effect of soil amendments, i.e., compost, zeolite, and calcium oxide, on the chemical properties of soil contaminated with Cr(III) and Cr(VI) and the uptake of selected heavy metals by spring barley (Hordeum vulgare L.) and maize (Zea mays L.) was determined in a pot experiment. The content of all investigated heavy metals in the tested plants varied significantly in response to the tested soil amendments and increasing concentrations of Cr(III) and Cr(VI). Compost, zeolite, and calcium oxide contributed to an increase in the average yield of the aerial parts of maize plants only in treatments contaminated with Cr(III). The concentrations of Cr, Zn, and Ni in the aerial parts of spring barley and maize were higher in treatments contaminated with Cr(III) than in treatments contaminated with Cr(VI). Calcium oxide induced a significant increase in soil pH relative to the control treatment. In treatments without soil amendments, the average Cr content of soil was higher in pots contaminated with Cr(VI). The concentrations of Zn and Cu in non-amended treatments were negatively correlated with increasing doses of Cr(III) and Cr(VI). Calcium oxide decreased the average content of Cr, Cu, and Ni in all experimental variants. Compost increased the average content of Zn in treatments contaminated with Cr(III) and Cr(IV) relative to non-amended soil.
A woody-biochar was added to waste biomass during a composting process. The resulting compost-char was amended to a metal contaminated soil and two plant species, L. perenne and E. sativa, were grown in a pot experiment to determine 1) plant survival and stress factors, 2) uptake of metals to plants and, 3) chemical characteristics of sampled soils and pore waters. Compost supplemented with biochar after the composting process were also tested, as well as a commercially available compost, for comparison. Co-composting with biochar hastened the composting process, resulting in a composite material of reduced odour, increased maturity, circum-neutral pH and increased moisture retention than compost (increase by 3% of easily removable water content). When amended to the soil, CaCl2 extractable and pore water metals s were reduced by all compost treatments with little influence of biochar addition at any tested dose. Plant growth success was promoted furthest by the addition of co-composted biochar to the test soil, especially in the case of E. sativa. For both tested plant species significant reductions in plant metal concentrations (e.g. 8-times for Zn) were achieved, against the control soil, by compost, regardless of biochar addition. The results of this study demonstrate that the addition of biochar into the composting process can hasten the stability of the resulting compost-char, with more favourable characteristics as a soil amendment/improver than compost alone. This appears achievable whilst also maintaining the provision of available nutrients to soils and the reduction of metal mobility, and improved conditions for plant establishment.
- MeSH
- biodegradace MeSH
- biomasa MeSH
- Brassicaceae chemie růst a vývoj MeSH
- dřevěné a živočišné uhlí chemie MeSH
- dřevo chemie MeSH
- jílek chemie růst a vývoj MeSH
- kompostování * MeSH
- kovy analýza MeSH
- látky znečišťující půdu analýza MeSH
- půda chemie MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
A simple sequential extraction was used for evaluation of the Zn behavior during twelve-week intensive composting and on compost application in two soils. The efficiency of Zn extraction from compost with 0.11 mol l?1 acetic acid is higher than that with 0.01 mol l?1 CaCl2. Composting led to redistribution of exchangeable Zn into less available, mainly oxidizable and reducible fractions. The content of zinc extracted with 0.01 mol l?1 CaCl2 decreased in Fluvisol and Cambisol soils fertilized with compost. On the contrary, the zinc extracted with the acetic acid solution increased in a Fluvisol soil after compost application, despite the 70 % bonding of Zn in residual fraction. No significant change was found in compostmodified Cambisol. The results suggest that the sewage sludge compost can be safely used in soils containing zinc. The Zn content in compost and soil can be simply assessed by extraction.
- MeSH
- Escherichia coli genetika účinky léků MeSH
- finanční podpora výzkumu jako téma MeSH
- hořčice rodu Brassica účinky léků MeSH
- látky znečišťující půdu analýza toxicita MeSH
- odpadky - odstraňování metody MeSH
- polycyklické aromatické uhlovodíky chemie toxicita MeSH
- průmyslový odpad analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
The minimization of landfill deposition of waste containing biological components represents a big problem, especially in built-up residential areas. The main problem of biologically degradable municipal waste is the quantity and composition of household waste which can have an important influence on decomposition processes already in collecting vessels. An amount of household waste produced in residential areas in the Czech Republic varies from 31 to 337 g/person/day, with an average value of 250 g. Waste of plant material character is produced in the range from 22 to 291 g/person/day. Composts were prepared in the home composters from household food waste. After the end of the composting process, compost does not have the organic component sufficiently stabilized, which is documented by a high value of electrical conductivity of aqueous leachate reaching more than 4 mS/cm and low humification index. The value of the humification index pronouncedly increased after eight weeks from 0.05 to 0.85, while compost from composting of green waste using windrow system have humification index of 3.48. An aim of this work is the determination of properties of composts prepared from HFW in automatic composters and identification of differences compared with composts prepared from a mixture of biodegradable green waste.
- MeSH
- kompostování * MeSH
- potraviny MeSH
- půda MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
This paper focuses on compost use in overpasses and underpasses for wild animals over roads and other similar linear structures. In this context, good quality of compost may result in faster and more resistant vegetation cover during the year. Inter alia, this can be interpreted also as reduction of damage and saving lives. There are millions of tones of plant residue produced every day worldwide. These represent prospective business for manufacturers of compost additives called "accelerators". The opinions of the sale representatives' with regards to other alternatives of biowaste utilization and their own products were reviewed. The robust analyzes of several "accelerated" composts revealed that the quality was generally low. Only two accelerated composts were somewhat similar in quality to the blank sample that was produced according to the traditional procedure. Overlaps between the interests of decision makers on future soil fertility were weighed against the preferences on short-term profit. Possible causes that allowed the boom of these underperforming products and the possible consequences are also discussed. Conclusions regarding the ethical concerns on how to run businesses with products whose profitability depends on weaknesses in the legal system and customer unawareness are to follow.
One of crucial waste management problems is the management of organic waste. This activity employs the composting. In case of green waste, its application seems reasonable, whereas the use of selected mixed waste raises problems related to the compost quality. Across countries, the non-sterile organic fraction of municipal solid waste is being separated through the mechanical-biological treatment. The technology is a solution of waste treatment and meets objectives set out in the Landfill Directive. There are many problems associated with the use of output products. The use of compost as a fertilizer requires determination of its impact on the environment. Compost quality can be assessed using analytical methods and phytotoxicity tests. Therefore, the aim of this study was to describe changes in physico-chemical, enzymatic, phytotoxicity and vegetation parameters occurring in composts from two systems - a prismatic installation for green waste, and a mechanical-biological treatment installation. The compost from green waste exhibited greater stability. Values of dehydrogenase activity were lower if compared with the mechanically and biologically treated compost, which indicates lower compost maturity. The biomass production of Brassica napus L. and Fetuca rubra L. was higher in the variant with the application of green compost. The influence on Hordeum vulgare L., Cannabis sativa L., and Sinapis alba L. depended on the plant type and the compost used. Nevertheless, the compost from green waste was less toxic. The evidence from this study suggests that the mechanical-biological treatment had problems associated with the maturation and quality of the final product.
- MeSH
- biomasa MeSH
- kompostování * MeSH
- nakládání s odpady * MeSH
- půda MeSH
- tuhý odpad MeSH
- Publikační typ
- časopisecké články MeSH
Consumption of heavy metals, especially lead (Pb) contaminated food is a serious threat to human health. Higher Pb uptake by the plant affects the quality, growth and yield of crops. However, inoculation of plant growth-promoting rhizobacteria (PGPR) along with a mixture of organic amendments and biochar could be an effective way to overcome the problem of Pb toxicity. That's why current pot experiment was conducted to investigate the effect of compost mixed biochar (CB) and ACC deaminase producing PGPR on growth and yield of spinach plants under artificially induced Pb toxicity. Six different treatments i.e., control, Alcaligenes faecalis (PGPR1), Bacillus amyloliquefaciens (PGPR2), compost + biochar (CB), PGPR1 + CB and PGPR2 + CB were applied under 250 mg Pb kg-1 soil. Results showed that inoculation of PGPRs (Alcaligenes faecalis and Bacillus amyloliquefaciens) alone and along with CB significantly enhanced root fresh (47%) and dry weight (31%), potassium concentration (11%) in the spinach plant. Whereas, CB + Bacillus amyloliquefaciens significantly decreased (43%) the concentration of Pb in the spinach root over control. In conclusion, CB + Bacillus amyloliquefaciens has the potential to mitigate the Pb induced toxicity in the spinach. The obtained result can be further used in the planning and execution of rhizobacteria and compost mixed biochar-based soil amendment.
- MeSH
- Alcaligenes faecalis enzymologie izolace a purifikace metabolismus MeSH
- Bacillus amyloliquefaciens enzymologie izolace a purifikace metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- chlorofyl metabolismus MeSH
- draslík analýza MeSH
- dřevěné a živočišné uhlí chemie MeSH
- koncentrace vodíkových iontů MeSH
- kořeny rostlin růst a vývoj metabolismus mikrobiologie MeSH
- látky znečišťující půdu chemie metabolismus toxicita MeSH
- lyasy štěpící vazby C-C metabolismus MeSH
- olovo chemie metabolismus toxicita MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- Spinacia oleracea chemie účinky léků mikrobiologie MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
The temperature of matured compost is an indicator of feedstock quality and also a good feedback informing about the suitability of an applied technological procedure. Two independent experiments using the technology of windrow composting at open area were conducted with the final goal to evaluate the effect of compost pile covering (in comparison with uncovered piles) on the course of composting process - behaviour of temperature over time and oxygen content. Two types of sheets were used - Top Tex permeable sheet and impermeable polyethylene sheet. The experiment I (summer months) aimed at comparison of efficiency between the Top Tex sheet cover and the uncovered compost piles, while experiment II (autumn months) compared treatments using the Top Tex sheet and polyethylene sheet by contrast. Within the experiment I the composts consisted of cattle slurry and fresh grass matter at a ratio of 1:1, in case of experiment II consisted of pig/cattle manure, fresh grass matter and chipped material at a ratio of about 1:2:1. The obtained data showed no significant differences among the cover treatments according to ANOVA. The only exception was oxygen content in pile 4 (experiment II) under Top Tex sheet, where a markedly higher oxygen content than under polyethylene sheet was measured during the whole composting period. It was the only case where statistical analysis proved a significant difference; the p-value was 0.0002.