Acta dermato-venerologica ; vol. 41, suppl. 44
149 s. : grafy ; 26 cm
- Conspectus
- Patologie. Klinická medicína
- NML Fields
- dermatovenerologie
The variation in the diversity of methanogens in sediment depths from Sitka stream was studied by constructing a 16S rRNA gene library using methanogen-specific primers and a denaturing gradient gel electrophoresis (DGGE)-based approach. A total of nine different phylotypes from the 16S rRNA library were obtained, and all of them were clustered within the order Methanosarcinales. These nine phylotypes likely represent nine new species and at least 5-6 new genera. Similarly, DGGE analysis revealed an increase in the diversity of methanogens with an increase in sediment depth. These results suggest that Methanosarcinales phylotypes might be the dominant methanogens in the sediment from Sitka stream, and the diversity of methanogens increases as the depth increases. Results of the present study will help in making effective strategies to monitor the dominant methanogen phylotypes and methane emissions in the environment.
- MeSH
- Denaturing Gradient Gel Electrophoresis MeSH
- DNA, Archaeal chemistry genetics MeSH
- Phylogeny MeSH
- Geologic Sediments microbiology MeSH
- Methanosarcinales isolation & purification MeSH
- Molecular Sequence Data MeSH
- Rivers MeSH
- DNA, Ribosomal chemistry genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Cluster Analysis MeSH
- Biota * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Stormwater sediments of various sizes and densities are recognised as one of the most important stormwater quality parameters that can be conventionally controlled by settling in detention ponds. The bottom grid structure (BGS) is an innovative concept proposed in this study to enhance removal of stormwater sediments entering ponds and reduce sediment resuspension. This concept was studied in a hydraulic scale model with the objective of elucidating the effects of the BGS geometry on stormwater sediment trapping. Towards this end, the BGS cell size and depth, and the cell cross-wall angle were varied for a range of flow rates, and the sediment trapping efficiency was measured in the model. The main value of the observed sediment trapping efficiencies, in the range from 13 to 55%, was a comparative assessment of various BGS designs. In general, larger cells (footprint 10 × 10 cm) were more effective than the smaller cells (5 × 5 cm), the cell depth exerted small influence on sediment trapping, and the cells with inclined cross-walls proved more effective in sediment trapping than the vertical cross-walls. However, the BGS with inclined cross-walls would be harder to maintain. Future studies should address an optimal cell design and testing in an actual stormwater pond.
- MeSH
- Geologic Sediments * MeSH
- Ponds * MeSH
- Bays MeSH
- Publication type
- Journal Article MeSH
The paper deals with the influence of soil genesis on the physical-mechanical properties. The presented case study was conducted in the region of the Ostrava Basin where there is a varied genetic composition of the Quaternary geological structure on the underlying Neogeneous sediments which are sediments of analogous granulometry but different genesis. In this study, 7827 soil samples of an eolian, fluvial, glacial, and deluvial origin and their laboratory analyses results were used. The study identified different values in certain cases, mostly in coarser-grained foundation soils, such as sandy loam S4 (MS) and clayey sand F4 (CS). The soils of the fluvial origin manifest different values than other genetic types. Next, based on regression analyses, dependence was proved neither on the deposition depth (depth of samples) nor from the point of view of the individual foundation soil classes or the genetic types. The contribution of the paper is to point at the influence of genesis on the foundation soil properties so that engineering geologists and geotechnicians pay more attention to the genesis during engineering-geological and geotechnical investigations.
Lake Medard is an oligotrophic post-mining lake characterised by ferruginous bottom waters, with marked redox gradients resulting from iron (Fe) and nitrogen (N) speciation and accompanying depth-dependent variations in the abundance of volatile fatty acids (VFAs), pH and alkalinity. The lacustrine system is meromictic, featuring a dysoxic hypolimnion and an anoxic monimolimnion with relatively high concentrations of sulfate (SO42-, 19 ± 2 mM) and Fe(ii) (127 ± 17 μM). An increase in dissolved manganese is also observed with increasing depth, together with a general lack of sulfide, which can only be detected at the sediment-water interface at concentrations of ∼0.30 μM. In the hypolimnion, nitrate (NO3-) becomes progressively depleted and ammonium (NH4+) dominates the dissolved N inventory (up to 185 ± 13 μM). Here we describe the biogeochemical disequilibrium conditions governing critical mineralogical transformations involving Fe and phosphorus (P) co-precipitation in the dysoxic-to-anoxic bottom water column. A combination of mineral equilibrium modelling and synchrotron-based diffraction and spectroscopic techniques was applied to investigate the minerals comprising the upper anoxic sediments. The combined dataset indicates that elemental recycling on and below the hypolimnion promote the precipitation of FeOOH polymorphs that accumulate as heterogeneous mineral clusters. Changes in the relative abundance of bacterioplankton taxa with increasing water depth point to a link between the activity of certain members of Proteobacteria and the co-recycling of carbon (C), N, and Fe stocks. Such a redox recycling process seems to lead to P stabilisation into organic-rich Fe-(oxyhydr)oxides near and above the anoxic sediment-water interface (SWI).
- MeSH
- Nitrogen MeSH
- Ecosystem * MeSH
- Phosphorus chemistry MeSH
- Geologic Sediments chemistry MeSH
- Mining MeSH
- Lakes chemistry microbiology MeSH
- Nitrogen Cycle MeSH
- Manganese chemistry MeSH
- Minerals MeSH
- Oxidation-Reduction MeSH
- Plankton MeSH
- Sulfates MeSH
- Sulfides chemistry MeSH
- Carbon chemistry MeSH
- Aquatic Organisms MeSH
- Iron chemistry MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences.
- MeSH
- Water Pollutants, Chemical analysis MeSH
- Geologic Sediments analysis MeSH
- Lakes analysis MeSH
- Environmental Monitoring MeSH
- Particulate Matter analysis MeSH
- Plastics analysis MeSH
- Particle Size MeSH
- Wind * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Italy MeSH
Studies on methanogenesis from freshwater sediments have so far primarily focused on lake sediments. To expand our knowledge on the community composition of methanogenic archaea in river sediments, we studied the abundance and diversity of methanogenic archaea at two localities along a vertical profile (top 50 cm) obtained from sediment samples from Sitka stream (the Czech Republic). In this study, we compare two sites which previously have been shown to have a 10-fold different methane emission. Archaeal and methanogen abundance were analyzed by real-time PCR and T-RFLP. Our results show that the absolute numbers for the methanogenic community (qPCR) are relatively stable along a vertical profile as well as for both study sites. This was also true for the archaeal community and for the three major methanogenic orders in our samples (Methanosarcinales, Methanomicrobiales, and Methanobacteriales). However, the underlying community structure (T-RFLP) reveals different community compositions of the methanogens for both locations as well as for different depth layers and over different sampling times. In general, our data confirm that Methanosarcinales together with Methanomicrobiales are the two dominant methanogenic orders in river sediments, while members of Methanobacteriales contribute a smaller community and Methanocellales are only rarely present in this sediment. Our results show that the previously observed 10-fold difference in methane emission of the two sites could not be explained by molecular methods alone.
- MeSH
- Archaea classification genetics metabolism MeSH
- Biodiversity * MeSH
- DNA, Archaeal genetics MeSH
- Geologic Sediments microbiology MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Methane metabolism MeSH
- Polymorphism, Restriction Fragment Length MeSH
- Rivers microbiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Methanogenic archaea produce methane as a metabolic product under anoxic conditions and they play a crucial role in the global methane cycle. In this study molecular diversity of methanogenic archaea in the hyporheic sediment of the lowland stream Sitka (Olomouc, Czech Republic) was analyzed by PCR amplification, cloning and sequencing analysis of the methyl coenzyme M reductase alpha subunit (mcrA) gene. Sequencing analysis of 60 clones revealed 24 different mcrA phylotypes from hyporheic sedimentary layers to a depth of 50 cm. Phylotypes were affiliated with Methanomicrobiales, Methanosarcinales and Methanobacteriales orders. Only one phylotype remains unclassified. The majority of the phylotypes showed higher affiliation with uncultured methanogens than with known methanogenic species. The presence of relatively rich assemblage of methanogenic archaea confirmed that methanogens may be an important component of hyporheic microbial communities and may affect CH4 cycling in rivers.
- MeSH
- Archaea genetics MeSH
- Genes, Archaeal MeSH
- Phylogeny MeSH
- Gene Library MeSH
- Geologic Sediments microbiology MeSH
- Methane metabolism MeSH
- Environmental Microbiology MeSH
- Molecular Sequence Data MeSH
- Rivers microbiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Abundance and diversity of methanogenic archaea were studied at five localities along a longitudinal profile of a Sitka stream (Czech Republic). Samples of hyporheic sediments were collected from two sediment depths (0-25 cm and 25-50 cm) by freeze-core method. Methanogen community was analyzed by fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequencing method. The proportion of methanogens to the DAPI-stained cells varied among all localities and depths with an average value 2.08 × 10(5) per g of dry sediment with the range from 0.37 to 4.96 × 10(5) cells per g of dry sediment. A total of 73 bands were detected at 19 different positions on the DGGE gel and the highest methanogen diversity was found at the downstream located sites. There was no relationship between methanogen diversity and sediment depth. Cluster analysis of DGGE image showed three main clusters consisting of localities that differed in the number and similarity of the DGGE bands. Sequencing analysis of representative DGGE bands revealed phylotypes affiliated with members belonging to the orders Methanosarcinales, Methanomicrobiales and Methanocellales. The knowledge about occurrence and diversity of methanogenic archaea in freshwater ecosystems are essential for methane dynamics in river sediments and can contribute to the understanding of global warming process.
- MeSH
- Archaea classification genetics metabolism MeSH
- Biodiversity * MeSH
- Denaturing Gradient Gel Electrophoresis MeSH
- Phylogeny MeSH
- Geologic Sediments microbiology MeSH
- Methane metabolism MeSH
- Rivers * microbiology MeSH
- Sequence Analysis, DNA MeSH
- Environment MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
A recent data set for 22 poly- and per-fluorinated compounds (PFASs) in Ponar grab samples of surface sediments and cores from the Great Lakes of North America was examined for concentrations, loads, correlations with geographical coordinates and depth (time), and for sources. Correlations were determined by multivariate regression analyses. Source apportionment of PFASs was carried out by positive matrix factorization (PMF) for two cores from Lake Ontario. For the five lakes together, the total load of PFASs in sediments was estimated to be 245 ± 24 tonnes, which is about half the load for total PCBs. The recent annual loading was 1812 ± 320 kg/yr. Concentrations and inventories of PFASs were greatest in Lakes Erie and Ontario. Since 1947, concentrations of perfluorooctane sulfonic acid (PFOS) in ten cores have increased exponentially as a function of time with doubling times between 10 and 54 yr and have leveled off in three cores since 2000. PMF demonstrated an effective grouping of two particle-associated factors, characterized mainly by longer-chain PFASs (C ≥ 8) and two other factors of mainly shorter-chain compounds (C ≤ 6). Two factors feature only one dominant compound: factor 1, PFOS, and factor 3, perfluorobutane sulfonic acid (PFBS). Of all factors, factor 3 with PFBS has the largest contribution (47.8%). Significant scores for perfluorohexane sulfonic acid (PFHxS) and PFBS, along with flat or decreasing PFOS contributions since 2003, indicate that the replacement of PFOS with these compounds is beginning to take effect in the environment.
- MeSH
- Water Pollutants, Chemical analysis MeSH
- Fluorocarbons MeSH
- Geologic Sediments MeSH
- Lakes MeSH
- Alkanesulfonic Acids MeSH
- Sulfonic Acids analysis MeSH
- Environmental Monitoring * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Great Lakes Region MeSH
- Ontario MeSH
- North America MeSH