thymic epithelial cells
Dotaz
Zobrazit nápovědu
... ELSEVIER -- SAUNDERS -- HEMATOLOGY/ONCOLOGY CLINICS -- OF NORTH AMERICA -- Thymic Epithelial Neoplasms ... ... Imaging of Thymic Epithelial Neoplasms 409 -- Melissa L. Rosado-de-Christenson, Diane C. ... ... Marom -- Thymic epithelial neoplasms are uncommon lesions. ... ... Surgical Treatment of Thymic Epithelial Neoplasms 475 -- Larry R. ... ... Wick -- The prognosis of thymic epithelial tumors depends on their separation into thymoma and thymic ...
Hematology/oncology clinics of North America, ISSN 0889-8588 vol.22, no. 3, June 2008
xii, 381-580 s. : il. ; 24 cm
- MeSH
- lymfatické nemoci diagnóza terapie MeSH
- nádory brzlíku MeSH
- thymom MeSH
- Publikační typ
- sborníky MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- onkologie
- endokrinologie
Medullary thymic epithelial cells (mTECs), which produce and present self-antigens, are essential for the establishment of central tolerance. Since mTEC numbers are limited, their function is complemented by thymic dendritic cells (DCs), which transfer mTEC-produced self-antigens via cooperative antigen transfer (CAT). While CAT is required for effective T cell selection, many aspects remain enigmatic. Given the recently described heterogeneity of mTECs and DCs, it is unclear whether the antigen acquisition from a particular TEC subset is mediated by preferential pairing with a specific subset of DCs. Using several relevant Cre-based mouse models that control for the expression of fluorescent proteins, we have found that, in regards to CAT, each subset of thymic DCs preferentially targets a distinct mTEC subset(s). Importantly, XCR1+-activated DC subset represented the most potent subset in CAT. Interestingly, thymic DCs can also acquire antigens from more than one mTEC, and of these, monocyte-derived dendritic cells (moDCs) were determined to be the most efficient. moDCs also represented the most potent DC subset in the acquisition of antigen from other DCs. These findings suggest a preferential pairing model for the distribution of mTEC-derived antigens among distinct populations of thymic DCs.
- MeSH
- autoantigeny metabolismus MeSH
- dendritické buňky imunologie metabolismus MeSH
- epitelové buňky imunologie metabolismus MeSH
- imunologická tolerance * MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- prezentace antigenu imunologie MeSH
- thymus cytologie imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The development of thymic regulatory T cells (Treg) is mediated by Aire-regulated self-antigen presentation on medullary thymic epithelial cells (mTECs) and dendritic cells (DCs), but the cooperation between these cells is still poorly understood. Here we show that signaling through Toll-like receptors (TLR) expressed on mTECs regulates the production of specific chemokines and other genes associated with post-Aire mTEC development. Using single-cell RNA-sequencing, we identify a new thymic CD14+Sirpα+ population of monocyte-derived dendritic cells (CD14+moDC) that are enriched in the thymic medulla and effectively acquire mTEC-derived antigens in response to the above chemokines. Consistently, the cellularity of CD14+moDC is diminished in mice with MyD88-deficient TECs, in which the frequency and functionality of thymic CD25+Foxp3+ Tregs are decreased, leading to aggravated mouse experimental colitis. Thus, our findings describe a TLR-dependent function of mTECs for the recruitment of CD14+moDC, the generation of Tregs, and thereby the establishment of central tolerance.
- MeSH
- analýza jednotlivých buněk MeSH
- autoantigeny imunologie MeSH
- autotolerance MeSH
- chemokiny imunologie metabolismus MeSH
- dendritické buňky imunologie MeSH
- epitelové buňky imunologie metabolismus MeSH
- kolitida imunologie MeSH
- lipopolysacharidové receptory metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- převzatá imunita MeSH
- prezentace antigenu MeSH
- průtoková cytometrie MeSH
- receptory imunologické metabolismus MeSH
- regulační T-lymfocyty imunologie transplantace MeSH
- sekvenční analýza RNA MeSH
- separace buněk MeSH
- signální transdukce imunologie MeSH
- thymus cytologie imunologie MeSH
- toll-like receptory metabolismus MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Our previous studies on intranasal tolerance induction demonstrated reduction of allergic responses with different allergen constructs. The underlying mechanisms varied depending on their conformation or size. OBJECTIVE: The aim of the present study was to compare the uptake of two structurally different allergen molecules within the respiratory tract following intranasal application. METHODS: The three-dimensional Bet v 1 (Bv1-Protein) and the T cell epitope peptide of Bet v 1 (Bv1-Peptide) were labelled with 5,6-Carboxyfluorescein (FAM) and their uptake was investigated in lung cells and cells of the nasal associated lymphoid tissue from naive and sensitised BALB/c mice. Phenotypic characterisation of FAM+ lung cells after antigen incubation in vitro and after intranasal application was performed by flow cytometry. Impact of Bv1-Protein and Bv1-Peptide on cytokine profiles and gene expression in vivo or in an alveolar epithelial type II (ATII) cell line were assessed in mono- and co-cultures with monocytes using ELISA and quantitative real-time PCR. RESULTS: Both antigens were taken up preferably by ATII-like cells (ATII-LCs) in naive mice, and by macrophages in sensitised mice. After intranasal application, Bv1-Peptide was taken up faster and more efficiently than Bv1-Protein. In vivo and in vitro experiments revealed that Bv1-Protein induced the transcription of thymic stromal lymphopoietin mRNA while Bv1-Peptide induced the transcription of IL-10 and MCP1 mRNA in ATII-LCs. CONCLUSION AND CLINICAL RELEVANCE: Both tested antigens were taken up by ATII-LCs under steady state conditions and induced different polarisation of the immune responses. These data may have an important impact for the generation of novel and more effective prophylactic or therapeutic tools targeting the respiratory mucosa.
- MeSH
- alergeny metabolismus MeSH
- alergie MeSH
- antigeny rostlinné chemie MeSH
- antigeny metabolismus MeSH
- cytokiny metabolismus MeSH
- dýchací soustava imunologie MeSH
- epitelové buňky cytologie MeSH
- epitopy T-lymfocytární chemie MeSH
- epitopy chemie MeSH
- fenotyp MeSH
- fluoresceiny chemie MeSH
- imunitní systém MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- plicní alveoly cytologie MeSH
- průtoková cytometrie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
... The Epithelial Stem Cell Niche in the Tooth.265 -- Mark Tummers and Irma Thesleff -- PART FOUR Mesoderm ... ... Development of Epithelial Stem Cell Concepts 1 -- Christopher S. Potten and James W. Wilson -- 2. ... ... Evolution of Stem Cells 47 -- Hans Bode -- 5. Stem Cell Niches 59 -- D. ... ... Multipotent Epithelial Skin Stem Cells -- Tudorita Tumbar and Elaine Fuchs -- 25. ... ... Islets of Thymic Epithelium: Telltale Signs of Epithelial Stem-Progenitor Cell Activity in -- Thymus ...
2 sv. : il., tab. ; 30 cm + 1 CD-ROM
- MeSH
- kmenové buňky MeSH
- tkáňové inženýrství MeSH
- výzkum embrya etika MeSH
- výzkum plodu etika MeSH
- Publikační typ
- příručky MeSH
Male infertility affects approximately 14% of all European men, of which ~44% are characterized as idiopathic. There is an urgency to identify the factors that affect male fertility. One such factor, Autoimmune Regulator (AIRE), a protein found in the thymus, has been studied in the context of central tolerance functioning as a nuclear transcription modulator, responsible for the expression of tissue-restricted antigens in specialized thymic cells that prevent autoimmunity. While its expression in the testes remains enigmatic, we recently observed that sterility in mice correlates with the absence of Aire in the testes, regardless of the deficient expression in medullary thymic epithelial cells or cells of the hematopoietic system. By assessing the Aire transcript levels, we discovered that Sertoli cells are the exclusive source of Aire in the testes, where it most likely plays a non-immune role, suggesting an unknown mechanism by which testicular Aire regulates fertility. Here, we discuss these results in the context of previous reports which have suggested that infertility observed in Aire deficient mice is of an autoimmune aetiology. We present an alternative point of view for the role of Aire in testes in respect to fertility altering the perspective of how Aire's function in the testes is currently perceived.
- MeSH
- autoimunita * MeSH
- buněčné jádro MeSH
- epitelové buňky * metabolismus MeSH
- fertilita MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Since its discovery, Aire has been the topic of numerous studies in its role as a transcriptional regulator in the thymus where it promotes the "promiscuous" expression of a large repertoire of tissue-restricted antigens (TRAs) that are normally expressed only in the immune periphery. This process occurs in specialized medullary thymic epithelial cells (mTECs) and mediates the elimination of self-reactive T cells or promotes their conversion to the Foxp3+ regulatory T cell lineage, both of which are required for the prevention of autoimmunity. In recent years, there has been increasing interest in the role of extrathymic Aire expression in peripheral organs. The focus has primarily been on the identification of the cellular source(s) and mechanism(s) by which extrathymic AIRE affects tolerance-related or other physiological processes. A cadre of OMICs tools including single cell RNA sequencing and novel transgenic models to trace Aire expression to perform lineage tracing experiments have shed light on a phenomenon that is more complex than previously thought. In this chapter, we provide a deeper analysis of how extrathymic Aire research has developed and progressed, how cellular sources were identified, and how the function of AIRE was determined. Current data suggests that extrathymic AIRE fulfills a function that differs from what has been observed in the thymus and strongly argues that its main purpose is to regulate transcriptional programs in a cell content-dependent manner. Surprisingly, there is data that also suggests a non-transcriptional role of extrathymic AIRE in the cytoplasm. We have arrived at a potential turning point that will take the field from the classical understanding of AIRE as a transcription factor in control of TRA expression to its role in immunological and non-immunological processes in the periphery.
Branchioma is an uncommon benign neoplasm with an adult male predominance, typically occurring in the lower neck region. Different names have been used for this entity in the past (ectopic hamartomatous thymoma, branchial anlage mixed tumor, thymic anlage tumor, biphenotypic branchioma), but currently, the term branchioma has been widely accepted. Branchioma is composed of endodermal and mesodermal lineage derivatives, in particular epithelial islands, spindle cells, and mature adipose tissue without preexistent thymic tissue or evidence of thymic differentiation. Twenty-three branchiomas were evaluated morphologically. Eighteen cases with sufficient tissue were assessed by immunohistochemistry, next-generation sequencing (NGS) using the Illumina Oncology TS500 panel, and fluorescence in situ hybridization (FISH) using an RB1 dual-color probe. All cases showed a biphasic morphology of epithelial and spindle cells with intermingled fatty tissue. Carcinoma arising in branchioma was detected in three cases. The neoplastic cells showed strong AE1/3 immunolabeling (100%), while the spindle cells expressed CD34, p63, and SMA (100%); AR was detected in 40-100% of nuclei (mean, 47%) in 14 cases. Rb1 showed nuclear loss in ≥ 95% of neoplastic cells in 16 cases (89%), while two cases revealed retained expression in 10-20% of tumor cell nuclei. NGS revealed a variable spectrum of likely pathogenic variants (n = 5) or variants of unknown clinical significance (n = 6). Loss of Rb1 was detected by FISH in two cases. Recent developments support branchioma as a true neoplasm, most likely derived from the rudimental embryological structures of endoderm and mesoderm. Frequent Rb1 loss by immunohistochemistry and heterozygous deletion by FISH is a real pitfall and potential confusion with other Rb1-deficient head and neck neoplasms (i.e., spindle cell lipoma), especially in small biopsy specimens.
- MeSH
- branchiom * patologie MeSH
- dospělí MeSH
- hybridizace in situ fluorescenční MeSH
- lidé MeSH
- molekulární biologie MeSH
- nádory brzlíku * MeSH
- nádory glandulární a epitelové * MeSH
- nádory měkkých tkání * patologie MeSH
- nádory sítnice * MeSH
- retinoblastom * genetika patologie MeSH
- thymom * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Carcinoma showing thymus-like elements (CASTLE) is an extremely rare malignant tumor of the thyroid gland and soft tissues of the neck with favorable prognosis. Histological features of the CASTLE are similar to thymic carcinoma, and it is assumed that it arises from the ectopic thymic tissue or the remnants of branchial pouches. The optimal treatment strategy is still uncertain because of the rarity of the tumor. The mainstay of treatment is surgery. The role of other modalities is unclear. We present a case report of a patient with locally advanced CASTLE of the thyroid gland who was not suitable for surgery and underwent radical radiotherapy with subsequent achievement of complete remission. We also present a literature review.
- MeSH
- lidé MeSH
- nádory brzlíku * patologie MeSH
- nádory glandulární a epitelové * MeSH
- nádory štítné žlázy * patologie radioterapie chirurgie MeSH
- prognóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH