OBJECTIVES: This study quantified blood bicarbonate (HCO3-) kinetics and gastrointestinal upset to determine the gender-related ergogenic potential of sodium bicarbonate (0.15-, 0.25- and 0.35 gSB·kgFat-free mass (FFM)-1) in high intensity functional training. DESIGN: Double-blind randomized placebo-controlled crossover. METHODS: Thirty female and male athletes performed two bouts of the Wingate Anaerobic Test (WAnTPRE-HIFT and WAnTPOST-HIFT) interspaced with two 3-min bouts of Wall Balls and Burpees 120 min after ingestion of three sodium bicarbonate doses. Blood HCO3- was determined pre-ingestion, after supplementation and before/post exercise. Gastrointestinal upset was evaluated 120 min post-ingestion. Control (CTRL) measurements were performed. RESULTS: There were significant gender × treatment interactions for: changes in blood HCO3- at 60 min post-ingestion (p = 0.014; η2p = 0.104; at 0.15 gSB·kgFFM-1 males experienced higher increase than females); peak power (p = 0.015; η2p = 0.103) and average power (p = 0.005; η2p = 0.124) during WAnTPOST-HIFT, and changes in peak power between the Wingate Anaerobic Test bouts (p = 0.049; η2p = 0.081). Sodium bicarbonate compared to PLA had no significant impact on Wall Balls and Burpees performance. The dose of 0.35 gSB·kgFFM-1 resulted in higher less severe gastrointestinal symptoms compared to CTRL and 0.15 gSB·kgFFM-1 (p = 0.001; W = 0.178); and higher total gastrointestinal upset compared to CTRL, PLA and 0.15 gSB·kgFFM-1 (p < 0.001; W = 0.323). CONCLUSIONS: There were dose- and gender-related differences in extracellular buffering capacity and ergogenic potential of sodium bicarbonate. The study suggested a detrimental impact of gastrointestinal upset on performance.
- Klíčová slova
- Anaerobic capacity, Buffering agents, Exercise performance, High-intensity interval training, Side effects, Supplementation,
- MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- hydrogenuhličitan sodný * aplikace a dávkování farmakologie krev MeSH
- klinické křížové studie * MeSH
- látky zvyšující výkon aplikace a dávkování farmakologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- sexuální faktory MeSH
- zátěžový test MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- hydrogenuhličitan sodný * MeSH
- látky zvyšující výkon MeSH
Myocardial remodelling involves structural and functional changes in the heart, potentially leading to heart failure. The deoxycorticosterone acetate (DOCA)/salt model is a widely used experimental approach to study hypertension-induced cardiac remodelling. It allows to investigate the mechanisms underlying myocardial fibrosis and hypertrophy, which are key contributors to impaired cardiac function. In this study, myocardial remodelling in rat deoxycorticosterone acetate/salt model was examined over a three-week period. The experiment involved 11 male Sprague-Dawley rats, divided into two groups: fibrosis (n=6) and control (n=5). Myocardial remodelling was induced in the fibrosis group through unilateral nephrectomy, deoxyco-rticosterone acetate administration, and increased salt intake. The results revealed significant structural changes, including increased left ventricular wall thickness, myocardial fractional volume, and development of myocardial fibrosis. Despite these changes, left ventricular ejection fraction was preserved and even increased. ECG analysis showed significant prolongation of the PR interval and widening of the QRS complex in the fibrosis group, indicating disrupted atrioventricular and ventricular conduction, likely due to fibrosis and hypertrophy. Correlation analysis suggested a potential relationship between QRS duration and myocardial hypertrophy, although no significant correlations were found among other ECG parameters and structural changes detected by MRI. The study highlights the advantage of the DOCA/salt model in exploring the impact of myocardial remodelling on electrophysiological properties. Notably, this study is among the first to show that early myocardial remodelling in this model is accompanied by distinct electrophysiological changes, suggesting that advanced methods combined with established animal models can open new opportunities for research in this field. Key words Myocardial fibrosis, Remodelling, Animal model, DOCA-salt, Magnetic resonance imaging.
- MeSH
- deoxykortikosteron-21-acetát * MeSH
- elektrokardiografie * MeSH
- fibróza MeSH
- krysa rodu Rattus MeSH
- kuchyňská sůl škodlivé účinky MeSH
- modely nemocí na zvířatech MeSH
- myokard patologie MeSH
- potkani Sprague-Dawley * MeSH
- remodelace komor * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deoxykortikosteron-21-acetát * MeSH
- kuchyňská sůl MeSH
Biofilm formation is an effective survival strategy of plant-associated microorganisms in hostile environments, so the application of biofilm-forming and exopolysaccharide (EPS)-producing beneficial microbes to plants has received more attention in recent years. This study examined the ability of biofilm and EPS production of Bacillus subtilis and Bacillus thuringiensis strains under different NaCl concentrations (0, 50, 100, 200, and 400 mmol/L), pH values (5.5, 6.5, 7.5, and 8.5), and phosphate levels (0, 25, 50, and 100 mmol/L at 0 and 400 mmol/L NaCl). B. subtilis BS2 and B. thuringiensis BS6/BS7 strains significantly increased biofilm formation in a similar pattern to EPS production under salt stress. B. subtilis BS2/BS3 enhanced biofilm production at slightly acidic pH with a lower EPS production but the other strains formed considerably more amount of biofilm and EPS at alkaline pH. Interestingly, higher levels of phosphate substantially decreased biofilm and EPS production at 0 mmol/L NaCl but increased biofilm formation at 400 mmol/L salt concentration. Overall, contrary to phosphate, salt and pH differently influenced biofilm and EPS production by Bacillus strains. EPS production contributed to biofilm formation to some extent under all the conditions tested. Some Bacillus strains produced more abundant biofilm under salt and pH stress, indicating their potential to form in vivo biofilms in rhizosphere and on plants, particularly under unfavorable conditions.
- Klíčová slova
- Biofilms, Exopolysaccharides, Salt, Stress, pH,
- MeSH
- Bacillus subtilis fyziologie metabolismus účinky léků MeSH
- Bacillus thuringiensis fyziologie účinky léků MeSH
- bakteriální polysacharidy * metabolismus biosyntéza MeSH
- biofilmy * účinky léků růst a vývoj MeSH
- chlorid sodný * farmakologie metabolismus MeSH
- fosfáty * metabolismus farmakologie MeSH
- koncentrace vodíkových iontů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální polysacharidy * MeSH
- chlorid sodný * MeSH
- exopolysaccharide, Bacillus MeSH Prohlížeč
- fosfáty * MeSH
The identification of genes involved in salinity tolerance has primarily focused on model plants and crops. However, plants naturally adapted to highly saline environments offer valuable insights into tolerance to extreme salinity. Salicornia plants grow in coastal salt marshes, stimulated by NaCl. To understand this tolerance, we generated genome sequences of two Salicornia species and analyzed the transcriptomic and proteomic responses of Salicornia bigelovii to NaCl. Subcellular membrane proteomes reveal that SbiSOS1, a homolog of the well-known SALT-OVERLY-SENSITIVE 1 (SOS1) protein, appears to localize to the tonoplast, consistent with subcellular localization assays in tobacco. This neo-localized protein can pump Na+ into the vacuole, preventing toxicity in the cytosol. We further identify 11 proteins of interest, of which SbiSALTY, substantially improves yeast growth on saline media. Structural characterization using NMR identified it as an intrinsically disordered protein, localizing to the endoplasmic reticulum in planta, where it can interact with ribosomes and RNA, stabilizing or protecting them during salt stress.
- MeSH
- Chenopodiaceae * metabolismus genetika účinky léků MeSH
- chlorid sodný farmakologie metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- proteomika MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- rostlinné proteiny * metabolismus genetika MeSH
- salinita MeSH
- solný stres MeSH
- tabák metabolismus genetika účinky léků MeSH
- tolerance k soli * genetika MeSH
- transkriptom MeSH
- vakuoly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Consumption of raw and undercooked meat is considered as an important source of Toxoplasma gondii infections. However, most non-heated meat products contain salt and additives, which affect T. gondii viability. It was our aim to develop an in vitro method to substitute the mouse bioassay for determining the effect of salting on T. gondii viability. Two sheep were experimentally infected by oral inoculation with 6.5 × 104 oocysts. Grinded meat samples of 50 g were prepared from heart, diaphragm, and four meat cuts. Also, pooled meat samples were either kept untreated (positive control), frozen (negative control) or supplemented with 0.6 %, 0.9 %, 1.2 % or 2.7 % NaCl. All samples were digested in pepsin-HCl solution, and digests were inoculated in duplicate onto monolayers of RK13 (a rabbit kidney cell line). Cells were maintained for up to four weeks and parasite growth was monitored by assessing Cq-values using the T. gondii qPCR on cell culture supernatant in intervals of one week and ΔCq-values determined. Additionally, 500 μL of each digest from the individual meat cuts, heart and diaphragm were inoculated in duplicate in IFNγ KO mice. Both sheep developed an antibody response and tissue samples contained similar concentrations of T. gondii DNA. From all untreated meat samples positive ΔCq-values were obtained in the in vitro assay, indicating presence and multiplication of viable parasites. This was in line with the mouse bioassay, with the exception of a negative mouse bioassay on one heart sample. Samples supplemented with 0.6 %-1.2 % NaCl showed positive ΔCq-values over time. The frozen sample and the sample supplemented with 2.7 % NaCl remained qPCR positive but with high Cq-values, which indicated no growth. In conclusion, the in vitro method has successfully been used to detect viable T. gondii in tissues of experimentally infected sheep, and a clear difference in T. gondii viability was observed between the samples supplemented with 2.7 % NaCl and those with 1.2 % NaCl or less.
- Klíčová slova
- Food safety, Inactivation, Meat, Salting, Toxoplasma gondii, Viability,
- MeSH
- chlorid sodný MeSH
- králíci MeSH
- masné výrobky * parazitologie MeSH
- maso parazitologie MeSH
- myši MeSH
- ovce MeSH
- Toxoplasma * genetika MeSH
- toxoplazmóza zvířat * parazitologie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid sodný MeSH
Few studies have investigated the hemodynamic mechanism whereby primary hyperaldosteronism causes hypertension. The traditional view holds that hyperaldosteronism initiates hypertension by amplifying salt-dependent increases in cardiac output (CO) by promoting increases in sodium retention and blood volume. Systemic vascular resistance (SVR) is said to increase only as a secondary consequence of the increased CO and blood pressure. Recently, we investigated the primary hemodynamic mechanism whereby hyperaldosteronism promotes salt sensitivity and initiation of salt-dependent hypertension. In unilaterally nephrectomized male Sprague-Dawley rats given infusions of aldosterone or vehicle, we found that aldosterone promoted salt sensitivity and initiation of salt-dependent hypertension by amplifying salt-induced increases in SVR while decreasing CO. In addition, we validated mathematical models of human integrative physiology, derived from Guyton's classic 1972 model - Quantitative Cardiovascular Physiology-2005 and HumMod-3.0.4. Neither model accurately predicted the usual changes in sodium balance, CO, and SVR that normally occur in response to clinically realistic increases in salt intake. These results demonstrate significant limitations with the hypotheses inherent in the Guyton models. Together these findings challenge the traditional view of the hemodynamic mechanisms that cause salt-sensitive hypertension in primary aldosteronism. Key words: Aldosterone, Blood pressure, Salt, Sodium, Rat.
- MeSH
- aldosteron krev metabolismus MeSH
- hemodynamika * účinky léků MeSH
- hyperaldosteronismus * patofyziologie metabolismus MeSH
- hypertenze * patofyziologie etiologie MeSH
- krevní tlak účinky léků fyziologie MeSH
- krysa rodu Rattus MeSH
- kuchyňská sůl * škodlivé účinky MeSH
- modely kardiovaskulární MeSH
- modely nemocí na zvířatech * MeSH
- potkani Sprague-Dawley * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aldosteron MeSH
- kuchyňská sůl * MeSH
Bacterial blight is a serious disease of carrot production worldwide. Under favorable conditions, the causal organism Xanthomonas hortorum pv. carotae causes serious loss especially in seed production because of its seed-borne character. Unlike fungal diseases, the treatment of bacterial diseases is limited and methods such as hot water or sodium hypochlorite (bleach) treatment are mainly used by seed companies. Here, we compared the efficacy of hot water treatment, sodium hypochlorite treatment and treatment with three phenolic compounds-carvacrol, thymol and eugenol, to eliminate Xanthomonas growth in vitro and subsequently in vivo on seeds of Xhc low, medium and highly infested carrot seed lots. The complete elimination of Xhc from germinated plants was obtained only for Xhc low infested seed lot with 1% sodium hypochlorite and carvacrol solutions in concentrations of 0.0196%- 0.313%. The significant reduction of Xhc presence in germinated plants of Xhc medium infested seed lot was achieved with 1% sodium hypochlorite treatment and hot water treatment. However, hot water treatment resulted in a significant reduction of seed germination percentage as well. Considering the elimination of Xhc infection from germinated plants and the effect on seed germination and plant vigor, 0.0196% carvacrol solution was suggested as an alternative to 1% sodium hypochlorite treatment regarding additional costs related to the liquidation of used treated water and to hot water treatment that has been proved to be insufficient to obtain disease-free plants.
- MeSH
- chlornan sodný farmakologie MeSH
- cymeny MeSH
- mrkev obecná * MeSH
- semena rostlinná mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- carvacrol MeSH Prohlížeč
- chlornan sodný MeSH
- cymeny MeSH
INTRODUCTION: Carp edema virus (CEV) is a fish poxvirus that primarily infects the gills of common carp. CEV causes koi sleepy disease (KSD), which is highly contagious and can result in mortality of up to 100%. METHODS: In the present study, we analyzed the stress and immune responses during KSD in two strains of common carp with different resistance to CEV: susceptible koi and resistant Amur sazan. Experiments were performed at two temperatures: 12°C and 18°C. In the case of koi carp, we also analyzed the effect of supplementation of 0.6% NaCl into tank water, which prevents mortality of the CEV-infected fish (salt rescue model). RESULTS: We found that CEV-infected koi kept at 18°C had the highest viral load, which correlated with the most severe histopathological changes in the gills. CEV infection resulted in the activation of stress response reflected by the upregulated expression of genes involved in stress response in the stress axis organs and increased levels of cortisol and glucose in the blood plasma. These changes were the most pronounced in CEV-infected koi kept at 18°C. At both temperatures, the activation of antiviral immune response was observed in koi kept under freshwater and NaCl conditions upon CEV infection. Interestingly, a clear downregulation of the expression of adaptive immune genes was observed in CEV-infected koi kept under freshwater at 18°C. CONCLUSION: CEV induces a stress response and modulates adaptive immune response in koi, and this is correlated with the level of viral load and disease development.
- Klíčová slova
- CEV, carp edema virus, common carp, fish poxviruses, immunomodulation, koi sleepy disease, stress,
- MeSH
- chlorid sodný MeSH
- edém MeSH
- imunita MeSH
- infekce vyvolané poxviry * MeSH
- kapři * MeSH
- nemoci ryb * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid sodný MeSH
About 30% of the FDA approved drugs in 2021 were protein-based therapeutics. However, therapeutic proteins can be unstable and rapidly eliminated from the blood, compared to conventional drugs. Furthermore, on-target but off-tumor protein binding can lead to off-tumor toxicity, lowering the maximum tolerated dose. Thus, for effective treatment therapeutic proteins often require continuous or frequent administration. To improve protein stability, delivery and release, proteins can be encapsulated inside drug delivery systems. These drug delivery systems protect the protein from degradation during (targeted) transport, prevent premature release and allow for long-term, sustained release. However, thus far achieving high protein loading in drug delivery systems remains challenging. Here, the use of protein desolvation with acetonitrile as an intermediate step to concentrate monoclonal antibodies for use in drug delivery systems is reported. Specifically, trastuzumab, daratumumab and atezolizumab were desolvated with high yield (∼90%) into protein nanoparticles below 100 nm with a low polydispersity index (<0.2). Their size could be controlled by the addition of low concentrations of sodium chloride between 0.5 and 2 mM. Protein particles could be redissolved in aqueous solutions and redissolved antibodies retained their binding activity as evaluated in cell binding assays and exemplified for trastuzumab in an ELISA.
- MeSH
- acetonitrily MeSH
- chlorid sodný terapeutické užití MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- nanočástice * MeSH
- systémy cílené aplikace léků MeSH
- trastuzumab terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetonitrily MeSH
- chlorid sodný MeSH
- trastuzumab MeSH
This study investigated microplastics (MPs) in commercial sea salts from Bangladesh. The presence of MPs in the 18 sea salt bands was 100 %, where the mean MPs abundance was 471.67 MPs/kg, ranging between 300 and 670 MPs/kg. The maximum number of MPs in the 300-1500 μm size class was significantly higher than the 1500-3000 μm and 3000-5000 μm size class. The most dominant color was black. Fibers and foams were the dominant shapes. The highest number of MPs was 41 %, obtained from coarse salt grains. Four types of polymers were mainly identified from the analyzed samples: PP, PE, PET, and PA. The mean polymer risk index value among these sea salts was 539 to 1257. The findings of this study can be helpful for consumers, salt industries, and policymakers to be aware of or reduce MP contamination levels in sea salts during production and consumption.
- Klíčová slova
- Commercial salt, Contamination, Health risk, Microplastic, Table salt,
- MeSH
- chemické látky znečišťující vodu * analýza MeSH
- kuchyňská sůl analýza MeSH
- mikroplasty * MeSH
- monitorování životního prostředí MeSH
- plastické hmoty MeSH
- soli MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Bangladéš MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- kuchyňská sůl MeSH
- mikroplasty * MeSH
- plastické hmoty MeSH
- soli MeSH