Most cited article - PubMed ID 11813102
Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species
The ribosomal RNA genes (rDNA) are universal genome components with a housekeeping function, given the crucial role of ribosomal RNA in the synthesis of ribosomes and thus for life-on-Earth. Therefore, their genomic organization is of considerable interest for biologists, in general. Ribosomal RNA genes have also been largely used to establish phylogenetic relationships, and to identify allopolyploid or homoploid hybridization.Here, we demonstrate how high-throughput sequencing data, through graph clustering implemented in RepeatExplorer2 pipeline ( https://repeatexplorer-elixir.cerit-sc.cz/galaxy/ ), can be helpful to decipher the genomic organization of 5S rRNA genes. We show that the linear shapes of cluster graphs are reminiscent to the linked organization of 5S and 35S rDNA (L-type arrangement) while the circular graphs correspond to their separate arrangement (S-type). We further present a simplified protocol based on the paper by (Garcia et al., Front Plant Sci 11:41, 2020) about the use of graph clustering of 5S rDNA homoeologs (S-type) to identify hybridization events in the species history. We found that the graph complexity (i.e., graph circularity in this case) is related to ploidy and genome complexity, with diploids typically showing circular-shaped graphs while allopolyploids and other interspecific hybrids display more complex graphs, with usually two or more interconnected loops representing intergenic spacers. When a three-genomic comparative clustering analysis from a given hybrid (homoploid/allopolyploid) and its putative progenitor species (diploids) is performed, it is possible to identify the corresponding homoeologous 5S rRNA gene families, and to elucidate the contribution of each putative parental genome to the 5S rDNA pool of the hybrid. Thus, the analysis of 5S rDNA cluster graphs by RepeatExplorer, together with information coming from other sources (e.g., morphology, cytogenetics) is a complementary approach for the determination of allopolyploid or homoploid hybridization and even ancient introgression events.
- Keywords
- 5S ribosomal RNA genes, Allopolyploid hybridization, Genomic analysis, Graph clustering, Homoploid hybridization, Introgression, Repeatome,
- MeSH
- Phylogeny MeSH
- Genomics * MeSH
- Genes, rRNA MeSH
- DNA, Ribosomal genetics MeSH
- RNA, Ribosomal, 5S * genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 5S * MeSH
The history of rDNA research started almost 90 years ago when the geneticist, Barbara McClintock observed that in interphase nuclei of maize the nucleolus was formed in association with a specific region normally located near the end of a chromosome, which she called the nucleolar organizer region (NOR). Cytologists in the twentieth century recognized the nucleolus as a common structure in all eukaryotic cells, using both light and electron microscopy and biochemical and genetic studies identified ribosomes as the subcellular sites of protein synthesis. In the mid- to late 1960s, the synthesis of nuclear-encoded rRNA was the only system in multicellular organisms where transcripts of known function could be isolated, and their synthesis and processing could be studied. Cytogenetic observations of NOR regions with altered structure in plant interspecific hybrids and detailed knowledge of structure and function of rDNA were prerequisites for studies of nucleolar dominance, epistatic interactions of rDNA loci, and epigenetic silencing. In this article, we focus on the early rDNA research in plants, performed mainly at the dawn of molecular biology in the 60 to 80-ties of the last century which presented a prequel to the modern genomic era. We discuss - from a personal view - the topics such as synthesis of rRNA precursor (35S pre-rRNA in plants), processing, and the organization of 35S and 5S rDNA. Cloning and sequencing led to the observation that the transcribed and processed regions of the rRNA genes vary enormously, even between populations and species, in comparison with the more conserved regions coding for the mature rRNAs. Epigenetic phenomena and the impact of hybridization and allopolyploidy on rDNA expression and homogenization are discussed. This historical view of scientific progress and achievements sets the scene for the other articles highlighting the immense progress in rDNA research published in this special issue of Frontiers in Plant Science on "Molecular organization, evolution, and function of ribosomal DNA."
- Keywords
- epigenetics, hybridization, molecular evolution, nucleolar dominance, polyploidy, rDNA research history, rRNA precursor, rRNA processing,
- Publication type
- Journal Article MeSH
- Review MeSH
The genus Rosa comprises more than 100 woody species characterized by intensive hybridization, introgression, and an overall complex evolutionary history. Besides many diploid species (2n = 2x = 14) polyploids ranging from 3x to 10x are frequently found. Here we analyzed 5S ribosomal DNA in 19 species covering two subgenera and the major sections within subg. Rosa. In addition to diploids and polyploids with regular meiosis, we focused on 5x dogroses (Rosa sect. Caninae), which exhibit an asymmetric meiosis differentiating between bivalent- and univalent-forming chromosomes. Using genomic resources, we reconstructed 5S rDNA units to reveal their phylogenetic relationships. Additionally, we designed locus-specific probes derived from intergenic spacers (IGSs) and determined the position and number of 5S rDNA families on chromosomes. Two major 5S rDNA families (termed 5S_A and 5S_B, respectively) were found at variable ratios in both diploid and polyploid species including members of the early diverging subgenera, Rosa persica and Rosa minutifolia. Within subg. Rosa species of sect. Rosa amplified the 5S_A variant only, while taxa of other sections contained both variants at variable ratios. The 5S_B family was often co-localized with 35S rDNA at the nucleolar organizer regions (NOR) chromosomes, whereas the co-localization of the 5S_A family with NOR was only exceptionally observed. The allo-pentaploid dogroses showed a distinct distribution of 5S rDNA families between bivalent- and univalent-forming chromosomes. In conclusion, two divergent 5S rDNA families dominate rose genomes. Both gene families apparently arose in the early history of the genus, already 30 myrs ago, and apparently survived numerous speciation events thereafter. These observations are consistent with a relatively slow genome turnover in the Rosa genus.
- Keywords
- 5S rDNA, Rosa, Rosaceae, cytogenetics, evolution, genomics, repeatome,
- Publication type
- Journal Article MeSH
INTRODUCTION: Ribosomal DNA (rDNA) loci have been widely used for identification of allopolyploids and hybrids, although few of these studies employed high-throughput sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE) pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for hybridogenic origin of species. Data were obtained from more than 80 plant species, including several well-defined allopolyploids and homoploid hybrids of different evolutionary ages and from widely dispersed taxonomic groups. RESULTS: (i) Diploids show simple circular-shaped graphs of their 5S rDNA clusters. In contrast, most allopolyploids and other interspecific hybrids exhibit more complex graphs composed of two or more interconnected loops representing intergenic spacers (IGS). (ii) There was a relationship between graph complexity and locus numbers. (iii) The sequences and lengths of the 5S rDNA units reconstituted in silico from k-mers were congruent with those experimentally determined. (iv) Three-genomic comparative cluster analysis of reads from allopolyploids and progenitor diploids allowed identification of homoeologous 5S rRNA gene families even in relatively ancient (c. 1 Myr) Gossypium and Brachypodium allopolyploids which already exhibit uniparental partial loss of rDNA repeats. (v) Finally, species harboring introgressed genomes exhibit exceptionally complex graph structures. CONCLUSION: We found that the cluster graph shapes and graph parameters (k-mer coverage scores and connected component index) well-reflect the organization and intragenomic homogeneity of 5S rDNA repeats. We propose that the analysis of 5S rDNA cluster graphs computed by the RE pipeline together with the cytogenetic analysis might be a reliable approach for the determination of the hybrid or allopolyploid plant species parentage and may also be useful for detecting historical introgression events.
- Keywords
- 5S rRNA genes, allopolyploidy, evolution, graph structure clustering, high-throughput sequencing, hybridization, repeatome,
- Publication type
- Journal Article MeSH
In plants, genome duplication followed by genome diversification and selection is recognized as a major evolutionary process. Rapid epigenetic and genetic changes that affect the transcription of parental genes are frequently observed after polyploidization. The pattern of alternative splicing is also frequently altered, yet the related molecular processes remain largely unresolved. Here, we study the inheritance and expression of parental variants of three floral organ identity genes in allotetraploid tobacco. DEFICIENS and GLOBOSA are B-class genes, and AGAMOUS is a C-class gene. Parental variants of these genes were found to be maintained in the tobacco genome, and the respective mRNAs were present in flower buds in comparable amounts. However, among five tobacco cultivars, we identified two in which the majority of paternal GLOBOSA pre-mRNA transcripts undergo exon 3 skipping, producing an mRNA with a premature termination codon. At the DNA level, we identified a G-A transition at the very last position of exon 3 in both cultivars. Although alternative splicing resulted in a dramatic decrease in full-length paternal GLOBOSA mRNA, no phenotypic effect was observed. Our finding likely serves as an example of the initiation of homoeolog diversification in a relatively young polyploid genome.
- Keywords
- Alternative splicing, Floral genes, Flowering, Polyploidy, Tobacco,
- MeSH
- Alternative Splicing genetics MeSH
- Point Mutation genetics MeSH
- Exons genetics MeSH
- Transcription, Genetic * MeSH
- Homeodomain Proteins biosynthesis genetics MeSH
- Nucleotides genetics MeSH
- Polyploidy MeSH
- RNA Precursors genetics MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Proteins biosynthesis genetics MeSH
- Nicotiana genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- GLOBOSA protein, plant MeSH Browser
- Homeodomain Proteins MeSH
- Nucleotides MeSH
- RNA Precursors MeSH
- Plant Proteins MeSH
Developmental processes are closely connected to certain states of epigenetic information which, among others, rely on methylation of chromatin. S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are key cofactors of enzymes catalyzing DNA and histone methylation. To study the consequences of altered SAH/SAM levels on plant development we applied 9-(S)-(2,3-dihydroxypropyl)-adenine (DHPA), an inhibitor of SAH-hydrolase, on tobacco seeds during a short phase of germination period (6 days). The transient drug treatment induced: (1) dosage-dependent global DNA hypomethylation mitotically transmitted to adult plants; (2) pleiotropic developmental defects including decreased apical dominance, altered leaf and flower symmetry, flower whorl malformations and reduced fertility; (3) dramatic upregulation of floral organ identity genes NTDEF, NTGLO and NAG1 in leaves. We conclude that temporal SAH-hydrolase inhibition deregulated floral genes expression probably via chromatin methylation changes. The data further show that plants might be particularly sensitive to accurate setting of SAH/SAM levels during critical developmental periods.
- MeSH
- Adenine analogs & derivatives toxicity MeSH
- Adenosylhomocysteinase antagonists & inhibitors metabolism MeSH
- DNA Primers genetics MeSH
- Epigenesis, Genetic drug effects physiology MeSH
- Germination drug effects physiology MeSH
- DNA, Complementary genetics MeSH
- Flowers anatomy & histology physiology MeSH
- DNA Methylation MeSH
- Statistics, Nonparametric MeSH
- Pollen physiology MeSH
- Gene Expression Regulation, Plant drug effects genetics physiology MeSH
- Plant Proteins metabolism MeSH
- Blotting, Southern MeSH
- Nicotiana enzymology physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 9-(2,3-dihydroxypropyl)adenine MeSH Browser
- Adenine MeSH
- Adenosylhomocysteinase MeSH
- DNA Primers MeSH
- GLO protein, Nicotiana tabacum MeSH Browser
- DNA, Complementary MeSH
- Plant Proteins MeSH
The widespread occurrence of epigenetic alterations in allopolyploid species deserves scrutiny that DNA methylation systems may be perturbed by interspecies hybridization and polyploidization. Here we studied the genes involved in DNA methylation in Nicotiana tabacum (tobacco) allotetraploid containing S and T genomes inherited from Nicotiana sylvestris and Nicotiana tomentosiformis progenitors. To determine the inheritance of DNA methyltransferase genes and their expression patterns we examined three major DNA methyltransferase families (MET1, CMT3 and DRM) from tobacco and the progenitor species. Using Southern blot hybridization and PCR-based methods (genomic CAPS), we found that the parental loci of these gene families are retained in tobacco. Homoeologous expression was found in all tissues examined (leaf, root, flower) suggesting that DNA methyltransferase genes were probably not themselves targets of uniparental epigenetic silencing for over thousands of generations of allotetraploid evolution. The level of CG and CHG methylation of selected high-copy repeated sequences was similar and high in tobacco and its diploid progenitors. We speculate that natural selection might favor additive expression of parental DNA methyltransferase genes maintaining high levels of DNA methylation in tobacco, which has a repeat-rich heterochromatic genome.
- MeSH
- Diploidy MeSH
- DNA, Plant genetics MeSH
- DNA (Cytosine-5-)-Methyltransferases classification genetics metabolism MeSH
- Epigenesis, Genetic MeSH
- Gene Expression MeSH
- Phylogeny MeSH
- Genome, Plant MeSH
- Cloning, Molecular MeSH
- DNA Methylation genetics MeSH
- Molecular Sequence Data MeSH
- Multigene Family * MeSH
- Polyploidy MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- Genes, Plant * MeSH
- Base Sequence MeSH
- Selection, Genetic MeSH
- Nicotiana enzymology genetics MeSH
- Tissue Distribution MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH
- DNA (Cytosine-5-)-Methyltransferases MeSH
In plants, 5S rRNA genes (5S rDNA) encoding 120-nt structural RNA molecules of ribosomes are organized in tandem arrays comprising thousands of units. Failure to correctly terminate transcription would generate longer inaccurately processed transcripts interfering with ribosome biogenesis. Hence multiple termination signals occur immediately after the 5S rRNA coding sequence. To obtain information about the efficiency of termination of 5S rDNA transcription in plants we analyzed 5S rRNA pools in three Nicotiana species, N. sylvestris, N. tomentosiformis and N. tabacum. In addition to highly abundant 120-nt 5S rRNA transcripts, we also detected RNA species composed of a genic region and variable lengths of intergenic sequences. These genic-intergenic RNA molecules occur at a frequency severalfold lower than the mature 120-nt transcripts, and are posttranscriptionally modified by polyadenylation at their 3' end in contrast to 120-nt transcripts. An absence of 5S small RNAs (smRNA) argue against a dominant role for the smRNA biosynthesis pathway in the degradation of aberrant 5S rRNA in Nicotiana. This work is the first description of polyadenylated 5S rRNA species in higher eukaryotes originating from a read-through transcription into the intergenic spacer. We propose that polyadenylation may function in a "quality control" pathway ensuring that only correctly processed molecules enter the ribosome biogenesis.
- MeSH
- Arabidopsis genetics MeSH
- Transcription, Genetic * MeSH
- DNA, Intergenic * MeSH
- RNA, Small Interfering metabolism MeSH
- RNA, Messenger metabolism MeSH
- Models, Genetic MeSH
- Molecular Sequence Data MeSH
- Polyadenylation * MeSH
- Gene Expression Regulation, Plant * MeSH
- RNA, Ribosomal, 5S genetics MeSH
- Base Sequence MeSH
- Sequence Homology, Nucleic Acid MeSH
- Nicotiana genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Intergenic * MeSH
- RNA, Small Interfering MeSH
- RNA, Messenger MeSH
- RNA, Ribosomal, 5S MeSH