Nejvíce citovaný článek - PubMed ID 12429834
Ammonia pulses and metabolic oscillations guide yeast colony development
Cell death is a natural part of the development of multicellular organisms and is central to their physiological and pathological states. However, the existence of regulated cell death in unicellular microorganisms, including eukaryotic and prokaryotic microbes, has been a topic of debate. One reason for the continued debate is the lack of obvious benefit from cell death in the context of a single cell. However, unicellularity is relative, as most of these microbes dwell in communities of varying complexities, often with complicated spatial organization. In these spatially organized microbial communities, such as yeast and bacterial colonies and biofilms growing on solid surfaces, cells differentiate into specialized types, and the whole community often behaves like a simple multicellular organism. As these communities develop and age, cell death appears to offer benefits to the community as a whole. This review explores the potential roles of cell death in spatially organized communities of yeasts and draws analogies to similar communities of bacteria. The natural dying processes in microbial cell communities are only partially understood and may result from suicidal death genes, (self-)sabotage (without death effectors), or from non-autonomous mechanisms driven by interactions with other differentiated cells. We focus on processes occurring during the stratification of yeast colonies, the formation of the extracellular matrix in biofilms, and discuss potential roles of cell death in shaping the organization, differentiation, and overall physiology of these microbial structures.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Gcn4p belongs to conserved AP-1 transcription factors involved in many cellular processes, including cell proliferation, stress response, and nutrient availability in yeast and mammals. AP-1 activities are regulated at different levels, such as translational activation or protein degradation, which increases the variability of regulation under different conditions. Gcn4p activity in unstructured yeast liquid cultures increases upon amino acid deficiency and is rapidly eliminated upon amino acid excess. Gcn2p kinase is the major described regulator of Gcn4p that enables GCN4 mRNA translation via the uORFs mechanism. Here, we show that Gcn4p is specifically active in U cells in the upper regions and inactive in L cells in the lower regions of differentiated colonies. Using in situ microscopy in combination with analysis of mutants and strains with GFP at different positions in the translational regulatory region of Gcn4p, we show that cell-specific Gcn4p activity is independent of Gcn2p or other translational or transcriptional regulation. Genetically, biochemically, and microscopically, we identified cell-specific proteasomal degradation as a key mechanism that diversifies Gcn4p function between U and L cells. The identified regulation leading to active Gcn4p in U cells with amino acids and efficient degradation in starved L cells differs from known regulations of Gcn4p in yeast but shows similarities to the activity of AP-1 ATF4 in mammals during insulin signaling. These findings may open new avenues for understanding the parallel activities of Gcn4p/ATF4 and reveal a novel biological role for cell type-specific regulation of proteasome-dependent degradation.IMPORTANCEIn nature, microbes usually live in spatially structured communities and differentiate into precisely localized, functionally specialized cells. The coordinated interplay of cells and their response to environmental changes, such as starvation, followed by metabolic adaptation, is critical for the survival of the entire community. Transcription factor Gcn4p is responsible for yeast adaptation under amino acid starvation in liquid cultures, and its activity is regulated mainly at the level of translation involving Gcn2p kinase. Whether Gcn4p functions in structured communities was unknown. We show that translational regulation of Gcn4p plays no role in the development of colony subpopulations; the main regulation occurs at the level of stabilization of the Gcn4p molecule in the cells of one subpopulation and its proteasomal degradation in the other. This regulation ensures specific spatiotemporal activity of Gcn4p in the colony. Our work highlights differences in regulatory networks in unorganized populations and organized structures of yeast, which in many respects resemble multicellular organisms.
- Klíčová slova
- Saccharomyces cerevisiae, cell-specific regulation, differentiated colonies, proteasomal degradation, spatially structured populations, transcription factor, yeast,
- MeSH
- protein-serin-threoninkinasy metabolismus genetika MeSH
- proteolýza MeSH
- proteosyntéza MeSH
- regulace genové exprese u hub * MeSH
- Saccharomyces cerevisiae - proteiny * genetika metabolismus MeSH
- Saccharomyces cerevisiae * genetika metabolismus MeSH
- stabilita proteinů MeSH
- transkripční faktory bZIP * metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GCN2 protein, S cerevisiae MeSH Prohlížeč
- GCN4 protein, S cerevisiae MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- transkripční faktory bZIP * MeSH
Single-celled yeasts form spatially structured populations - colonies and biofilms, either alone (single-species biofilms) or in cooperation with other microorganisms (mixed-species biofilms). Within populations, yeast cells develop in a coordinated manner, interact with each other and differentiate into specialized cell subpopulations that can better adapt to changing conditions (e.g. by reprogramming metabolism during nutrient deficiency) or protect the overall population from external influences (e.g. via extracellular matrix). Various omics tools together with specialized techniques for separating differentiated cells and in situ microscopy have revealed important processes and cell interactions in these structures, which are summarized here. Nevertheless, current knowledge is still only a small part of the mosaic of complexity and diversity of the multicellular structures that yeasts form in different environments. Future challenges include the use of integrated multi-omics approaches and a greater emphasis on the analysis of differentiated cell subpopulations with specific functions.
- Klíčová slova
- Biofilms, Cell differentiation, Colonies, Multicellular yeast structures, Regulation, Spatial community structure,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
During development of yeast colonies, various cell subpopulations form, which differ in their properties and specifically localize within the structure. Three branches of mitochondrial retrograde (RTG) signaling play a role in colony development and differentiation, each of them activating the production of specific markers in different cell types. Here, aiming to identify proteins and processes controlled by the RTG pathway, we analyzed proteomes of individual cell subpopulations from colonies of strains, mutated in genes of the RTG pathway. Resulting data, along with microscopic analyses revealed that the RTG pathway predominantly regulates processes in U cells, long-lived cells with unique properties, which are localized in upper colony regions. Rtg proteins therein activate processes leading to amino acid biosynthesis, including transport of metabolic intermediates between compartments, but also repress expression of mitochondrial ribosome components, thus possibly contributing to reduced mitochondrial translation in U cells. The results reveal the RTG pathway's role in activating metabolic processes, important in U cell adaptation to altered nutritional conditions. They also point to the important role of Rtg regulators in repressing mitochondrial activity in U cells.
- Klíčová slova
- Saccharomyces cerevisiae, colony development and differentiation, mitochondrial retrograde signaling, proteomic analysis, yeast colonies,
- MeSH
- aminokyseliny metabolismus MeSH
- analýza jednotlivých buněk MeSH
- biosyntetické dráhy genetika MeSH
- chromatografie kapalinová MeSH
- intracelulární signální peptidy a proteiny genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- proteomika MeSH
- regulace genové exprese u hub genetika MeSH
- represorové proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- signální transdukce genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- transkripční faktory BHLH-Zip genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- intracelulární signální peptidy a proteiny MeSH
- MKS1 protein, S cerevisiae MeSH Prohlížeč
- proteom MeSH
- represorové proteiny MeSH
- RTG1 protein, S cerevisiae MeSH Prohlížeč
- RTG2 protein, S cerevisiae MeSH Prohlížeč
- RTG3 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- transkripční faktory BHLH-Zip MeSH
Yeast biofilms are complex multicellular structures, in which the cells are well protected against drugs and other treatments and thus highly resistant to antifungal therapies. Colony biofilms represent an ideal system for studying molecular mechanisms and regulations involved in development and internal organization of biofilm structure as well as those that are involved in fungal domestication. We have identified here antagonistic functional interactions between transcriptional regulators Cyc8p and Tup1p that modulate the life-style of natural S. cerevisiae strains between biofilm and domesticated mode. Herein, strains with different levels of Cyc8p and Tup1p regulators were constructed, analyzed for processes involved in colony biofilm development and used in the identification of modes of regulation of Flo11p, a key adhesin in biofilm formation. Our data show that Tup1p and Cyc8p regulate biofilm formation in the opposite manner, being positive and negative regulators of colony complexity, cell-cell interaction and adhesion to surfaces. Notably, in-depth analysis of regulation of expression of Flo11p adhesin revealed that Cyc8p itself is the key repressor of FLO11 expression, whereas Tup1p counteracts Cyc8p's repressive function and, in addition, counters Flo11p degradation by an extracellular protease. Interestingly, the opposing actions of Tup1p and Cyc8p concern processes crucial to the biofilm mode of yeast multicellularity, whereas other multicellular processes such as cell flocculation are co-repressed by both regulators. This study provides insight into the mechanisms regulating complexity of the biofilm lifestyle of yeast grown on semisolid surfaces.
- MeSH
- biofilmy * MeSH
- buněčná adheze fyziologie MeSH
- jaderné proteiny genetika metabolismus MeSH
- membránové glykoproteiny genetika metabolismus MeSH
- mezibuněčná komunikace fyziologie MeSH
- regulace genové exprese u hub * MeSH
- represorové proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CYC8 protein, S cerevisiae MeSH Prohlížeč
- FLO11 protein, S cerevisiae MeSH Prohlížeč
- jaderné proteiny MeSH
- membránové glykoproteiny MeSH
- represorové proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- TUP1 protein, S cerevisiae MeSH Prohlížeč
We present the spatiotemporal metabolic differentiation of yeast cell subpopulations from upper, lower, and margin regions of colonies of different ages, based on comprehensive transcriptomic analysis. Furthermore, the analysis was extended to include smaller cell subpopulations identified previously by microscopy within fully differentiated U and L cells of aged colonies. New data from RNA-seq provides both spatial and temporal information on cell metabolic reprogramming during colony ageing and shows that cells at marginal positions are similar to upper cells, but both these cell types are metabolically distinct from cells localized to lower colony regions. As colonies age, dramatic metabolic reprogramming occurs in cells of upper regions, while changes in margin and lower cells are less prominent. Interestingly, whereas clear expression differences were identified between two L cell subpopulations, U cells (which adopt metabolic profiles, similar to those of tumor cells) form a more homogeneous cell population. The data identified crucial metabolic reprogramming events that arise de novo during colony ageing and are linked to U and L cell colony differentiation and support a role for mitochondria in this differentiation process.
Mitochondrial retrograde signaling mediates communication from altered mitochondria to the nucleus and is involved in many normal and pathophysiological changes, including cell metabolic reprogramming linked to cancer development and progression in mammals. The major mitochondrial retrograde pathway described in yeast includes three activators, Rtg1p, Rtg2p and Rtg3p, and repressors, Mks1p and Bmh1p/Bmh2p. Using differentiated yeast colonies, we show that Mks1p-Rtg pathway regulation is complex and includes three branches that divergently regulate the properties and fate of three specifically localized cell subpopulations via signals from differently altered mitochondria. The newly identified RTG pathway-regulated genes ATO1/ATO2 are expressed in colonial upper (U) cells, the cells with active TORC1 that metabolically resemble tumor cells, while CIT2 is a typical target induced in one subpopulation of starving lower (L) cells. The viability of the second L cell subpopulation is strictly dependent on RTG signaling. Additional co-activators of Rtg1p-Rtg3p specific to particular gene targets of each branch are required to regulate cell differentiation.
- Klíčová slova
- ageing and longevity, development and differentiation, mitochondrial retrograde signaling,
- MeSH
- buněčná diferenciace fyziologie MeSH
- geny hub fyziologie MeSH
- mitochondrie metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae fyziologie MeSH
- signální transdukce fyziologie MeSH
- viabilita buněk fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Saccharomyces cerevisiae - proteiny MeSH
Colonies of Saccharomyces cerevisiae laboratory strains pass through specific developmental phases when growing on solid respiratory medium. During entry into the so-called alkali phase, in which ammonia signaling is initiated, 2 prominent cell types are formed within the colonies: U cells in upper colony regions, which have a longevity phenotype and activate the expression of a large number of metabolic genes, and L cells in lower regions, which die more quickly and exhibit a starvation phenotype. Here, we performed a detailed analysis of the activities of enzymes of central carbon metabolism in lysates of both cell types and determined several fermentation end products, showing that previously reported expression differences are reflected in the different enzymatic capabilities of each cell type. Hence, U cells, despite being grown on respiratory medium, behave as fermenting cells, whereas L cells rely on respiratory metabolism and possess active gluconeogenesis. Using a spectrum of different inhibitors, we showed that glycolysis is essential for the formation, and particularly, the survival of U cells. We also showed that β-1,3-glucans that are released from the cell walls of L cells are the most likely source of carbohydrates for U cells.
- Klíčová slova
- enzymatic assays, fermentation, metabolic differentiation, respiration, yeast colonies,
- MeSH
- beta-glukany metabolismus MeSH
- buněčná stěna metabolismus MeSH
- časové faktory MeSH
- fenotyp MeSH
- fermentace * účinky léků MeSH
- genotyp MeSH
- glykolýza * účinky léků MeSH
- inhibitory enzymů farmakologie MeSH
- kultivační média chemie metabolismus MeSH
- mikrobiální viabilita MeSH
- mikrobiologické techniky metody MeSH
- počet mikrobiálních kolonií MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae účinky léků enzymologie genetika růst a vývoj MeSH
- sériové pasážování MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-glukany MeSH
- inhibitory enzymů MeSH
- kultivační média MeSH
- Saccharomyces cerevisiae - proteiny MeSH
The SUN family is comprised of proteins that are conserved among various yeasts and fungi, but that are absent in mammals and plants. Although the function(s) of these proteins are mostly unknown, they have been linked to various, often unrelated cellular processes such as those connected to mitochondrial and cell wall functions. Here we show that three of the four Saccharomyces cerevisiae SUN family proteins, Uth1p, Sim1p and Sun4p, are efficiently secreted out of the cells in different growth phases and their production is affected by the level of oxygen. The Uth1p, Sim1p, Sun4p and Nca3p are mostly synthesized during the growth phase of both yeast liquid cultures and colonies. Culture transition to slow-growing or stationary phases is linked with a decreased cellular concentration of Sim1p and Sun4p and with their efficient release from the cells. In contrast, Uth1p is released mainly from growing cells. The synthesis of Uth1p and Sim1p, but not of Sun4p, is repressed by anoxia. All four proteins confer cell sensitivity to zymolyase. In addition, Uth1p affects cell sensitivity to compounds influencing cell wall composition and integrity (such as Calcofluor white and Congo red) differently when growing on fermentative versus respiratory carbon sources. In contrast, Uth1p is essential for cell resistance to boric acids irrespective of carbon source. In summary, our novel findings support the hypothesis that SUN family proteins are involved in the remodeling of the yeast cell wall during the various phases of yeast culture development and under various environmental conditions. The finding that Uth1p is involved in cell sensitivity to boric acid, i.e. to a compound that is commonly used as an important antifungal in mycoses, opens up new possibilities of investigating the mechanisms of boric acid's action.
- MeSH
- benzensulfonáty metabolismus farmakologie MeSH
- buněčná stěna metabolismus MeSH
- extracelulární prostor metabolismus MeSH
- glukosidasy genetika metabolismus MeSH
- intracelulární prostor metabolismus MeSH
- kyseliny borité metabolismus farmakologie MeSH
- membránové proteiny genetika metabolismus MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- proteiny teplotního šoku genetika metabolismus MeSH
- regulace genové exprese u hub MeSH
- represorové proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae účinky léků genetika růst a vývoj metabolismus MeSH
- spotřeba kyslíku * MeSH
- transkripční faktory bHLH genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzensulfonáty MeSH
- C.I. Fluorescent Brightening Agent 28 MeSH Prohlížeč
- glukosidasy MeSH
- kyseliny borité MeSH
- membránové proteiny MeSH
- mitochondriální proteiny MeSH
- proteiny teplotního šoku MeSH
- represorové proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- SIM1 protein, S cerevisiae MeSH Prohlížeč
- Sun4 protein, S cerevisiae MeSH Prohlížeč
- transkripční faktory bHLH MeSH
- UTH1 protein, S cerevisiae MeSH Prohlížeč
During their development and aging on solid substrates, yeast giant colonies produce ammonia, which acts as a quorum sensing molecule. Ammonia production is connected with alkalization of the surrounding medium and with extensive reprogramming of cell metabolism. In addition, ammonia signaling is important for both horizontal (colony centre versus colony margin) and vertical (upper versus lower cell layers) colony differentiations. The centre of an aging differentiated giant colony is thus composed of two major cell subpopulations, the subpopulation of long-living, metabolically active and stress-resistant cells that form the upper layers of the colony and the subpopulation of stress-sensitive starving cells in the colony interior. Here, we show that microcolonies originating from one cell pass through similar developmental phases as giant colonies. Microcolony differentiation is linked to ammonia signaling, and cells similar to the upper and lower cells of aged giant colonies are formed even in relatively young microcolonies. A comparison of the properties of these cells revealed a number of features that are similar in microcolonies and giant colonies as well as a few that are only typical of chronologically aged giant colonies. These findings show that colony age per se is not crucial for colony differentiation.
- MeSH
- amoniak metabolismus MeSH
- kvasinky metabolismus MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniak MeSH