Most cited article - PubMed ID 17336985
IrAE: an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus
Ticks are ectoparasites that feed on blood and have an impressive ability to consume and process enormous amounts of host blood, allowing extremely long periods of starvation between blood meals. The central role in the parasitic lifestyle of ticks is played by the midgut. This organ efficiently stores and digests ingested blood and serves as the primary interface for the transmission of tick-borne pathogens. In this study, we used a label-free quantitative approach to perform a novel dynamic proteomic analysis of the midgut of Ixodesricinus nymphs, covering their development from unfed to pre-molt stages. We identified 1534 I. ricinus-specific proteins with a relatively low proportion of host proteins. This proteome dataset, which was carefully examined by manual scrutiny, allowed precise annotation of proteins important for blood meal processing and their dynamic changes during nymphal ontogeny. We focused on midgut molecules related to lipid hydrolysis, storage, and transport, opening a yet unexplored avenue for studying lipid metabolism in ticks. Further dynamic profiling of the tick's multi-enzyme digestive network, protease inhibitors, enzymes involved in redox homeostasis and detoxification, antimicrobial peptides, and proteins responsible for midgut colonization by Borrelia spirochetes promises to uncover new targets for targeting tick nymphs, the most critical life stage for transmission the pathogens that cause tick-borne diseases.
- Keywords
- Borrelia, Ixodes, antimicrobial peptides, label-free quantification, lipid metabolism, midgut, protease inhibitors, proteases, proteome, ticks,
- MeSH
- Ixodes * parasitology MeSH
- Proteome MeSH
- Proteomics MeSH
- Digestive System MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Proteome MeSH
The hard tick Ixodes ricinus is a vector of Lyme disease and tick-borne encephalitis. Host blood protein digestion, essential for tick development and reproduction, occurs in tick midgut digestive cells driven by cathepsin proteases. Little is known about the regulation of the digestive proteolytic machinery of I. ricinus. Here we characterize a novel cystatin-type protease inhibitor, mialostatin, from the I. ricinus midgut. Blood feeding rapidly induced mialostatin expression in the gut, which continued after tick detachment. Recombinant mialostatin inhibited a number of I. ricinus digestive cysteine cathepsins, with the greatest potency observed against cathepsin L isoforms, with which it co-localized in midgut digestive cells. The crystal structure of mialostatin was determined at 1.55 Å to explain its unique inhibitory specificity. Finally, mialostatin effectively blocked in vitro proteolysis of blood proteins by midgut cysteine cathepsins. Mialostatin is likely to be involved in the regulation of gut-associated proteolytic pathways, making midgut cystatins promising targets for tick control strategies.
- Keywords
- Ixodes ricinus, cathepsin, crystal structure, cysteine protease, digestion, midgut, parasite,
- MeSH
- Cystatins metabolism MeSH
- Phylogeny MeSH
- Cathepsin L metabolism MeSH
- Ticks metabolism MeSH
- Ixodes metabolism MeSH
- Blood Proteins metabolism MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Proteolysis MeSH
- Amino Acid Sequence MeSH
- Digestive System metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cystatins MeSH
- Cathepsin L MeSH
- Blood Proteins MeSH
Host blood protein digestion plays a pivotal role in the ontogeny and reproduction of hematophagous vectors. The gut of hematophagous arthropods stores and slowly digests host blood and represents the primary gateway for transmitted pathogens. The initial step in blood degradation is induced lysis of host red blood cells (hemolysis), which releases hemoglobin for subsequent processing by digestive proteolytic enzymes. The activity cycles and characteristics of hemolysis in vectors are poorly understood. Hence, we investigated hemolysis in two evolutionarily distant blood-feeding arthropods: The mosquito Culex pipiens and the soft tick Argas persicus, both of which are important human and veterinary disease vectors. Hemolysis in both species was cyclical after blood meal ingestion. Maximum digestion occurs under slightly alkaline conditions in females. Hemolytic activity appears to be of lipoid origin in C. pipiens and enzymatic activity (proteolytic) in A. persicus. We have assessed the effect of pH, incubation time, and temperature on hemolytic activity and the hemolysin. The susceptibility of red blood cells from different hosts to the hemolysin and the effect of metabolic inhibition of hemolytic activity were assessed. We conclude that in C. pipiens and A. persicus midgut hemolysins control the amplitude of blood lysis step to guarantee an efficient blood digestion.
- MeSH
- Arthropod Vectors physiology MeSH
- Arthropods MeSH
- Culex MeSH
- Culicidae MeSH
- Erythrocytes MeSH
- Hematologic Tests MeSH
- Hemolysis * MeSH
- Hemolysin Proteins MeSH
- Mosquito Vectors physiology MeSH
- Humans MeSH
- Feeding Behavior physiology MeSH
- Digestive System MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Hemolysin Proteins MeSH
Aza-peptide aldehydes and ketones are a new class of reversible protease inhibitors that are specific for the proteasome and clan CD cysteine proteases. We designed and synthesised aza-Leu derivatives that were specific for the chymotrypsin-like active site of the proteasome, aza-Asp derivatives that were effective inhibitors of caspases-3 and -6, and aza-Asn derivatives that inhibited S. mansoni and I. ricinus legumains. The crystal structure of caspase-3 in complex with our caspase-specific aza-peptide methyl ketone inhibitor with an aza-Asp residue at P1 revealed a covalent linkage between the inhibitor carbonyl carbon and the active site cysteinyl sulphur. Aza-peptide aldehydes and ketones showed no cross-reactivity towards cathepsin B or chymotrypsin. The initial in vitro selectivity of these inhibitors makes them suitable candidates for further development into therapeutic agents to potentially treat multiple myeloma, neurodegenerative diseases, and parasitic infections.
- Keywords
- Proteasome inhibitor, anticancer, antiparasitic, aza-peptide carbonyls, caspase and legumain inhibitors,
- MeSH
- Aldehydes chemistry pharmacology MeSH
- Aza Compounds chemistry pharmacology MeSH
- Cysteine Endopeptidases metabolism MeSH
- Protease Inhibitors chemical synthesis chemistry pharmacology MeSH
- Ketones chemistry pharmacology MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Peptides chemistry pharmacology MeSH
- Proteasome Endopeptidase Complex metabolism MeSH
- Drug Design * MeSH
- Cattle MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aldehydes MeSH
- Aza Compounds MeSH
- Cysteine Endopeptidases MeSH
- Protease Inhibitors MeSH
- Ketones MeSH
- Peptides MeSH
- Proteasome Endopeptidase Complex MeSH
Schistosomula (the post-infective stages) of the neurotropic schistosome Trichobilharzia regenti possess multiple isoforms of cathepsin B1 peptidase (TrCB1.1-TrCB1.6) with involvement in nutrient digestion. The comparison of substrate preferences of TrCB1.1 and TrCB1.4 showed that TrCB1.4 had a very narrow substrate specificity and after processing it was less effective toward protein substrates when compared to TrCB1.1. Self-processing of both isoforms could be facilitated by sulfated polysaccharides due to a specific binding motif in the pro-sequence. Trans-activation by heterologous enzymes was also successfully employed. Expression profiling revealed a high level of transcription of genes encoding the enzymatically inactive paralogs TrCB1.5 and TrCB1.6. The transcription level of TrCB1.6 was comparable with that of TrCB1.1 and TrCB1.2, the most abundant active isoforms. Recombinant TrCB1.6wt, a wild type paralog with a Cys29-to-Gly substitution in the active site that renders the enzyme inactive, was processed by the active TrCB1 forms and by an asparaginyl endopeptidase. Although TrCB1.6wt lacked hydrolytic activity, endopeptidase, but not dipeptidase, activity could be restored by mutating Gly29 to Cys29. The lack of exopeptidase activity may be due to other mutations, such as His110-to-Asn in the occluding loop and Asp224-to-Gly in the main body of the mature TrCB1.6, which do not occur in the active isoforms TrCB1.1 and TrCB1.4 with exopeptidase activity. The catalytically active enzymes and the inactive TrCB1.6 paralog formed complexes with chicken cystatin, thus supporting experimentally the hypothesis that inactive paralogs could potentially regulate the activity of the active forms or protect them from being inhibited by host inhibitors. The effect on cell viability and nitric oxide production by selected immune cells observed for TrCB1.1 was not confirmed for TrCB1.6. We show here that the active isoforms of TrCB1 have different affinities for peptide substrates thereby facilitating diversity in protein-derived nutrition for the parasite. The inactive paralogs are unexpectedly highly expressed and one of them retains the ability to bind cystatins, likely due to specific mutations in the occluding loop and the enzyme body. This suggests a role in sequestration of inhibitors and protection of active cysteine peptidases.
- Keywords
- cathepsin B, cystatin, helminth, occluding loop, peptidase, processing, schistosome, substrate specificity,
- MeSH
- Astrocytes metabolism MeSH
- Cystatins metabolism MeSH
- Hydrolysis MeSH
- Isoenzymes metabolism MeSH
- Cathepsin B chemistry genetics metabolism MeSH
- Macrophages metabolism MeSH
- Mice MeSH
- Nitric Oxide metabolism MeSH
- Enzyme Precursors metabolism MeSH
- Proteolysis MeSH
- RAW 264.7 Cells MeSH
- Recombinant Proteins metabolism MeSH
- Schistosomatidae enzymology pathogenicity MeSH
- Amino Acid Substitution MeSH
- Substrate Specificity MeSH
- Protein Binding MeSH
- Cell Survival MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- cystatin, egg-white MeSH Browser
- Cystatins MeSH
- Isoenzymes MeSH
- Cathepsin B MeSH
- Nitric Oxide MeSH
- Enzyme Precursors MeSH
- Recombinant Proteins MeSH
To successfully feed, ticks inject pharmacoactive molecules into the vertebrate host including cystatin cysteine protease inhibitors. However, the molecular and cellular events modulated by tick saliva remain largely unknown. Here, we describe and characterize a novel immunomodulatory cystatin, Iristatin, which is upregulated in the salivary glands of feeding Ixodes ricinus ticks. We present the crystal structure of Iristatin at 1.76 Å resolution. Purified recombinant Iristatin inhibited the proteolytic activity of cathepsins L and C and diminished IL-2, IL-4, IL-9, and IFN-γ production by different T-cell populations, IL-6 and IL-9 production by mast cells, and nitric oxide production by macrophages. Furthermore, Iristatin inhibited OVA antigen-induced CD4+ T-cell proliferation and leukocyte recruitment in vivo and in vitro. Our results indicate that Iristatin affects wide range of anti-tick immune responses in the vertebrate host and may be exploitable as an immunotherapeutic.
- Keywords
- Cathepsin, Crystal structure, Immune responses, Ixodes ricinus, Saliva,
- MeSH
- Cystatins classification genetics pharmacology MeSH
- Cytokines metabolism MeSH
- Epoxy Compounds metabolism MeSH
- Phylogeny MeSH
- Immunosuppressive Agents chemistry metabolism pharmacology MeSH
- Ixodes chemistry genetics metabolism MeSH
- Crystallography, X-Ray MeSH
- Macrophages drug effects metabolism MeSH
- Nitric Oxide metabolism MeSH
- Arthropod Proteins chemistry genetics pharmacology MeSH
- Proteolysis drug effects MeSH
- Amino Acid Sequence MeSH
- Sequence Homology, Amino Acid MeSH
- Salivary Cystatins chemistry genetics pharmacology MeSH
- T-Lymphocytes drug effects metabolism MeSH
- Tyrosine analogs & derivatives metabolism MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- cathestatin C MeSH Browser
- Cystatins MeSH
- Cytokines MeSH
- Epoxy Compounds MeSH
- Immunosuppressive Agents MeSH
- Nitric Oxide MeSH
- Arthropod Proteins MeSH
- Salivary Cystatins MeSH
- Tyrosine MeSH
Parasite inhibitors of cysteine peptidases are known to influence a vast range of processes linked to a degradation of either the parasites' own proteins or proteins native to their hosts. We characterise a novel type I cystatin (stefin) found in a sanguinivorous fish parasite Eudiplozoon nipponicum (Platyhelminthes: Monogenea). We have identified a transcript of its coding gene in the transcriptome of adult worms. Its amino acid sequence is similar to other stefins except for containing a legumain-binding domain, which is in this type of cystatins rather unusual. As expected, the recombinant form of E. nipponicum stefin (rEnStef) produced in Escherichia coli inhibits clan CA peptidases - cathepsins L and B of the worm - via the standard papain-binding domain. It also blocks haemoglobinolysis by cysteine peptidases in the worm's excretory-secretory products and soluble extracts. Furthermore, we had confirmed its ability to inhibit clan CD asparaginyl endopeptidase (legumain). The presence of a native EnStef in the excretory-secretory products of adult worms, detected by mass spectrometry, suggests that this protein has an important biological function at the host-parasite interface. We discuss the inhibitor's possible role in the regulation of blood digestion, modulation of antigen presentation, and in the regeneration of host tissues.
- MeSH
- Cystatins metabolism MeSH
- Cysteine Endopeptidases metabolism MeSH
- Escherichia coli MeSH
- Phylogeny MeSH
- Carps parasitology MeSH
- Cloning, Molecular MeSH
- Protein Conformation MeSH
- Platyhelminths metabolism MeSH
- Computer Simulation MeSH
- Protein Domains MeSH
- Helminth Proteins genetics metabolism MeSH
- Recombinant Proteins genetics metabolism MeSH
- Sequence Analysis, Protein MeSH
- Sequence Alignment MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- asparaginylendopeptidase MeSH Browser
- Cystatins MeSH
- Cysteine Endopeptidases MeSH
- Helminth Proteins MeSH
- Recombinant Proteins MeSH
To identify the gut-associated tick aspartic hemoglobinase, this work focuses on the functional diversity of multiple Ixodes ricinus cathepsin D forms (IrCDs). Out of three encoding genes representing Ixodes scapularis genome paralogs, IrCD1 is the most distinct enzyme with a shortened propeptide region and a unique pattern of predicted post-translational modifications. IrCD1 gene transcription is induced by tick feeding and is restricted to the gut tissue. The hemoglobinolytic role of IrCD1 was further supported by immunolocalization of IrCD1 in the vesicles of tick gut cells. Properties of recombinantly expressed rIrCD1 are consistent with the endo-lysosomal environment because the zymogen is autoactivated and remains optimally active in acidic conditions. Hemoglobin cleavage pattern of rIrCD1 is identical to that produced by the native enzyme. The preference for hydrophobic residues at the P1 and P1' position was confirmed by screening a novel synthetic tetradecapeptidyl substrate library. Outside the S1-S1' regions, rIrCD1 tolerates most amino acids but displays a preference for tyrosine at P3 and alanine at P2'. Further analysis of the cleavage site location within the peptide substrate indicated that IrCD1 is a true endopeptidase. The role in hemoglobinolysis was verified with RNAi knockdown of IrCD1 that decreased gut extract cathepsin D activity by >90%. IrCD1 was newly characterized as a unique hemoglobinolytic cathepsin D contributing to the complex intestinal proteolytic network of mainly cysteine peptidases in ticks.
- MeSH
- Transcription, Genetic physiology MeSH
- Genome physiology MeSH
- Hemoglobins genetics metabolism MeSH
- Cathepsin D genetics metabolism MeSH
- Ixodes enzymology genetics MeSH
- Protein Processing, Post-Translational physiology MeSH
- Arthropod Proteins genetics metabolism MeSH
- Recombinant Proteins genetics metabolism MeSH
- Intestines enzymology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Hemoglobins MeSH
- Cathepsin D MeSH
- Arthropod Proteins MeSH
- Recombinant Proteins MeSH
Ticks, as obligate hematophagous ectoparasites, impact greatly on animal and human health because they transmit various pathogens worldwide. Over the last decade, several cystatins from different hard and soft ticks were identified and biochemically analyzed for their role in the physiology and blood feeding lifestyle of ticks. All these cystatins are potent inhibitors of papain-like cysteine proteases, but not of legumain. Tick cystatins were either detected in the salivary glands and/or the midgut, key tick organs responsible for blood digestion and the expression of pharmacologically potent salivary proteins for blood feeding. For example, the transcription of two cystatins named HlSC-1 and Sialostatin L2 was highly upregulated in these tick tissues during feeding. Vaccinating hosts against Sialostatin L2 and Om-cystatin 2 as well as silencing of a cystatin gene from Amblyomma americanum significantly inhibited the feeding ability of ticks. Additionally, Om-cystatin 2 and Sialostatin L possessed strong host immunosuppressive properties by inhibiting dendritic cell maturation due to their interaction with cathepsin S. These two cystatins, together with Sialostatin L2 are the first tick cystatins with resolved three-dimensional structure. Sialostatin L, furthermore, showed preventive properties against autoimmune diseases. In the case of the cystatin Hlcyst-2, experimental evidence showed its role in tick innate immunity, since increased Hlcyst-2 transcript levels were detected in Babesia gibsoni-infected larval ticks and the protein inhibited Babesia growth. Other cystatins, such as Hlcyst-1 or Om-cystatin 2 are assumed to be involved in regulating blood digestion. Only for Bmcystatin was a role in tick embryogenesis suggested. Finally, all the biochemically analyzed tick cystatins are powerful protease inhibitors, and some may be novel antigens for developing anti-tick vaccines and drugs of medical importance due to their stringent target specificity.
- MeSH
- Cystatins pharmacology MeSH
- Cysteine Proteinase Inhibitors pharmacology MeSH
- Ticks drug effects physiology MeSH
- Humans MeSH
- Models, Molecular MeSH
- Molecular Sequence Data MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Feeding Behavior drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Cystatins MeSH
- Cysteine Proteinase Inhibitors MeSH
Cysteine proteases have been discovered in various bloodfeeding ectoparasites. Here, we assemble the available information about the function of these peptidases and reveal their role in hematophagy and parasite development. While most of the data shed light on key proteolytic events that play a role in arthropod physiology, we also report on the association of cysteine proteases with arthropod vectorial capacity. With emphasis on ticks, specifically Ixodes ricinus, we finally propose a model about the contribution of cysteine peptidases to blood digestion and how their concerted action with other tick midgut proteases leads to the absorbance of nutrients by the midgut epithelial cells.
- MeSH
- Arthropods enzymology MeSH
- Culicidae enzymology MeSH
- Cysteine Proteases metabolism MeSH
- Ticks enzymology MeSH
- Parasites enzymology MeSH
- Feeding Behavior physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Cysteine Proteases MeSH