Nejvíce citovaný článek - PubMed ID 18339416
Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus
BACKGROUND: Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia. Outcomes range from asymptomatic infection to fatal encephalitis, with host genetics likely playing a role. BALB/c mice have intermediate susceptibility to TBE virus (TBEV) and STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, which carries 12.5% of the STS genome on the BALB/c background, is more susceptible than BALB/c mice. In the present study, we employed these genetically distinct mouse models to investigate the host response to TBEV infection in both peripheral macrophages, one of the initial target cell populations, and the brain, the terminal target organ of the virus. METHODS: TBEV growth and the production of key cytokines and chemokines were measured and compared in macrophages derived from BALB/c, CcS-11, and STS mice. In addition, brains from these TBEV-infected mouse strains underwent in-depth transcriptomic analysis. RESULTS: Virus production in BALB/c and CcS-11 macrophages exhibited similar kinetics 24 and 48 h post-infection (hpi), but CcS-11 macrophages yielded significantly higher titers 72 hpi. Macrophages from both sensitive strains demonstrated elevated chemokine and proinflammatory cytokine production upon infection, whereas the resistant strain, STS, showed no cytokine/chemokine activation. Transcriptomic analysis of brain tissue demonstrated that the genetic background of the mouse strains dictated their transcriptional response to infection. The resistant strain exhibited a more robust cell-mediated immune response, whereas both sensitive strains showed a less effective cell-mediated response but increased cytokine signaling and signs of demyelination, with loss of oligodendrocytes. CONCLUSIONS: Our findings suggest that variations in susceptibility linked to host genetic background correspond with distinct host responses, both in the periphery upon virus entry into the organism and in the brain, the target organ of the virus. These results provide insights into the influence of host genetics on the clinical trajectory of TBE.
- Klíčová slova
- Genetics, Macrophages, Mouse model, Neuroinflammation, Tick-borne encephalitis, Tick-borne encephalitis virus, Transcriptomics,
- MeSH
- cytokiny metabolismus MeSH
- genetická predispozice k nemoci * MeSH
- genotyp MeSH
- klíšťová encefalitida * genetika imunologie patologie virologie MeSH
- makrofágy * virologie imunologie metabolismus MeSH
- mozek * virologie imunologie patologie metabolismus MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- viry klíšťové encefalitidy * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny MeSH
Tick-borne encephalitis virus (TBEV) is a flavivirus that causes human neuroinfections and represents a growing health problem. The human monoclonal antibody T025 targets envelope protein domain III (EDIII) of TBEV and related tick-borne flaviviruses, potently neutralizing TBEV in vitro and in preclinical models, representing a promising candidate for clinical development. We demonstrate that TBEV escape in the presence of T025 or T028 (another EDIII-targeting human monoclonal antibody) results in virus variants of reduced pathogenicity, characterized by distinct sets of amino acid changes in EDII and EDIII that are jointly needed to confer resistance. EDIII substitution K311N impairs formation of a salt bridge critical for T025-epitope interaction. EDII substitution E230K is not on the T025 epitope but likely induces quaternary rearrangements of the virus surface because of repulsion of positively charged residues on the adjacent EDI. A combination of T025 and T028 prevents virus escape and improves neutralization.
- Klíčová slova
- CP: Immunology, CP: Microbiology, escape mutant, monoclonal antibody, neutralization, tick-borne encephalitis, tick-borne encephalitis virus,
- MeSH
- epitopy MeSH
- klíšťová encefalitida * MeSH
- lidé MeSH
- monoklonální protilátky MeSH
- protilátky virové MeSH
- viry klíšťové encefalitidy * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- epitopy MeSH
- monoklonální protilátky MeSH
- protilátky virové MeSH
The aim of this review is to follow the history of studies on endemiv arboviruses and the diseases they cause which were detected in the Czech lands (Bohemia, Moravia and Silesia (i.e., the Czech Republic)). The viruses involve tick-borne encephalitis, West Nile and Usutu flaviviruses; the Sindbis alphavirus; Ťahyňa, Batai, Lednice and Sedlec bunyaviruses; the Uukuniemi phlebovirus; and the Tribeč orbivirus. Arboviruses temporarily imported from abroad to the Czech Republic have been omitted. This brief historical review includes a bibliography of all relevant papers.
- Klíčová slova
- arthropods, birds, mammals, mosquitoes, ticks,
- MeSH
- arbovirové infekce dějiny MeSH
- arboviry fyziologie MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- přehledy MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
Tick-borne encephalitis virus (TBEV) is a leading cause of vector-borne viral encephalitis with expanding endemic regions across Europe. In this study we tested in mice the efficacy of preinfection with a closely related low-virulent flavivirus, Langat virus (LGTV strain TP21), or a naturally avirulent TBEV strain (TBEV-280) in providing protection against lethal infection with the highly virulent TBEV strain (referred to as TBEV-Hypr). We show that prior infection with TP21 or TBEV-280 is efficient in protecting mice from lethal TBEV-Hypr challenge. Histopathological analysis of brains from nonimmunized mice revealed neuronal TBEV infection and necrosis. Neuroinflammation, gliosis, and neuronal necrosis was however also observed in some of the TP21 and TBEV-280 preinfected mice although at reduced frequency as compared to the nonimmunized TBEV-Hypr infected mice. qPCR detected the presence of viral RNA in the CNS of both TP21 and TBEV-280 immunized mice after TBEV-Hypr challenge, but significantly reduced compared to mock-immunized mice. Our results indicate that although TBEV-Hypr infection is effectively controlled in the periphery upon immunization with low-virulent LGTV or naturally avirulent TBEV 280, it may still enter the CNS of these animals. These findings contribute to our understanding of causes for vaccine failure in individuals vaccinated with TBE vaccines.
- Klíčová slova
- CNS, Langat virus, neuronal damage, tick-borne encephalitis virus, virus induced immunity,
- Publikační typ
- časopisecké články MeSH
A highly virulent strain (Hypr) of tick-borne encephalitis virus (TBEV) was serially subcultured in the mammalian porcine kidney stable (PS) and Ixodes ricinus tick (IRE/CTVM19) cell lines, producing three viral variants. These variants exhibited distinct plaque sizes and virulence in a mouse model. Comparing the full-genome sequences of all variants, several nucleotide changes were identified in different genomic regions. Furthermore, different sequential variants were revealed to co-exist within one sample as quasispecies. Interestingly, the above-mentioned nucleotide changes found within the whole genome sequences of the new variants were present alongside the nucleotide sequence of the parental strain, which was represented as a minority quasispecies. These observations further imply that TBEV exists as a heterogeneous population that contains virus variants pre-adapted to reproduction in different environments, probably enabling virus survival in ticks and mammals.
- Klíčová slova
- TBEV, flavivirus adaptation, genome mutation, host alternation, neuroinvasiveness, quasispecies, tick cell line,
- MeSH
- buněčné linie MeSH
- fyziologická adaptace genetika MeSH
- genetická variace MeSH
- genom virový MeSH
- klíště cytologie virologie MeSH
- klíšťová encefalitida virologie MeSH
- ledviny cytologie virologie MeSH
- mutace MeSH
- myši MeSH
- prasata MeSH
- quasispecies * MeSH
- virulence MeSH
- viry klíšťové encefalitidy genetika patogenita fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The adenosine analogue galidesivir (BCX4430), a broad-spectrum RNA virus inhibitor, has entered a phase 1 clinical safety and pharmacokinetics study in healthy subjects and is under clinical development for treatment of Ebola and yellow fever virus infections. Moreover, galidesivir also inhibits the reproduction of tick-borne encephalitis virus (TBEV) and numerous other medically important flaviviruses. Until now, studies of this antiviral agent have not yielded resistant viruses. Here, we demonstrate that an E460D substitution in the active site of TBEV RNA-dependent RNA polymerase (RdRp) confers resistance to galidesivir in cell culture. Galidesivir-resistant TBEV exhibited no cross-resistance to structurally different antiviral nucleoside analogues, such as 7-deaza-2'-C-methyladenosine, 2'-C-methyladenosine, and 4'-azido-aracytidine. Although the E460D substitution led to only a subtle decrease in viral fitness in cell culture, galidesivir-resistant TBEV was highly attenuated in vivo, with a 100% survival rate and no clinical signs observed in infected mice. Furthermore, no virus was detected in the sera, spleen, or brain of mice inoculated with the galidesivir-resistant TBEV. Our results contribute to understanding the molecular basis of galidesivir antiviral activity, flavivirus resistance to nucleoside inhibitors, and the potential contribution of viral RdRp to flavivirus neurovirulence.IMPORTANCE Tick-borne encephalitis virus (TBEV) is a pathogen that causes severe human neuroinfections in Europe and Asia and for which there is currently no specific therapy. We have previously found that galidesivir (BCX4430), a broad-spectrum RNA virus inhibitor, which is under clinical development for treatment of Ebola and yellow fever virus infections, has a strong antiviral effect against TBEV. For any antiviral drug, it is important to generate drug-resistant mutants to understand how the drug works. Here, we produced TBEV mutants resistant to galidesivir and found that the resistance is caused by a single amino acid substitution in an active site of the viral RNA-dependent RNA polymerase, an enzyme which is crucial for replication of the viral RNA genome. Although this substitution led only to a subtle decrease in viral fitness in cell culture, galidesivir-resistant TBEV was highly attenuated in a mouse model. Our results contribute to understanding the molecular basis of galidesivir antiviral activity.
- Klíčová slova
- BCX4430, attenuation, drug resistance, galidesivir, mutation, tick-borne encephalitis virus,
- MeSH
- adenin analogy a deriváty chemie farmakologie MeSH
- adenosin analogy a deriváty MeSH
- alely MeSH
- antibiotická rezistence MeSH
- antivirové látky chemie farmakologie MeSH
- buněčné linie MeSH
- genotyp MeSH
- klíšťová encefalitida farmakoterapie virologie MeSH
- modely nemocí na zvířatech MeSH
- mutace * MeSH
- myši MeSH
- pyrrolidiny chemie farmakologie MeSH
- substituce aminokyselin * MeSH
- virová léková rezistence * MeSH
- virové nestrukturální proteiny genetika MeSH
- viry klíšťové encefalitidy účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenin MeSH
- adenosin MeSH
- antivirové látky MeSH
- galidesivir MeSH Prohlížeč
- pyrrolidiny MeSH
- virové nestrukturální proteiny MeSH
Tick-borne encephalitis virus (TBEV) causes a severe and potentially fatal neuroinfection in humans. Despite its high medical relevance, no specific antiviral therapy is currently available. Here we demonstrate that treatment with a nucleoside analog, 7-deaza-2'-C-methyladenosine (7-deaza-2'-CMA), substantially improved disease outcomes, increased survival, and reduced signs of neuroinfection and viral titers in the brains of mice infected with a lethal dose of TBEV. To investigate the mechanism of action of 7-deaza-2'-CMA, two drug-resistant TBEV clones were generated and characterized. The two clones shared a signature amino acid substitution, S603T, in the viral NS5 RNA-dependent RNA polymerase (RdRp) domain. This mutation conferred resistance to various 2'-C-methylated nucleoside derivatives, but no cross-resistance was seen with other nucleoside analogs, such as 4'-C-azidocytidine and 2'-deoxy-2'-beta-hydroxy-4'-azidocytidine (RO-9187). All-atom molecular dynamics simulations revealed that the S603T RdRp mutant repels a water molecule that coordinates the position of a metal ion cofactor as 2'-C-methylated nucleoside analogs approach the active site. To investigate its phenotype, the S603T mutation was introduced into a recombinant TBEV strain (Oshima-IC) generated from an infectious cDNA clone and into a TBEV replicon that expresses a reporter luciferase gene (Oshima-REP-luc2A). The mutants were replication impaired, showing reduced growth and a small plaque size in mammalian cell culture and reduced levels of neuroinvasiveness and neurovirulence in rodent models. These results indicate that TBEV resistance to 2'-C-methylated nucleoside inhibitors is conferred by a single conservative mutation that causes a subtle atomic effect within the active site of the viral NS5 RdRp and is associated with strong attenuation of the virus.IMPORTANCE This study found that the nucleoside analog 7-deaza-2'-C-methyladenosine (7-deaza-2'-CMA) has high antiviral activity against tick-borne encephalitis virus (TBEV), a pathogen that causes severe human neuroinfections in large areas of Europe and Asia and for which there is currently no specific therapy. Treating mice infected with a lethal dose of TBEV with 7-deaza-2'-CMA resulted in significantly higher survival rates and reduced the severity of neurological signs of the disease. Thus, this compound shows promise for further development as an anti-TBEV drug. It is important to generate drug-resistant mutants to understand how the drug works and to develop guidelines for patient treatment. We generated TBEV mutants that were resistant not only to 7-deaza-2'-CMA but also to a broad range of other 2'-C-methylated antiviral medications. Our findings suggest that combination therapy may be used to improve treatment and reduce the emergence of drug-resistant viruses during nucleoside analog therapy for TBEV infection.
- Klíčová slova
- antiviral agents, antiviral therapy, escape mutant, tick-borne encephalitis virus, tick-borne pathogens,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Arthropod-borne viral encephalitis of diverse origins shows similar clinical symptoms, histopathology and magnetic resonance imaging, indicating that the patho mechanisms may be similar. There is no specific therapy to date. However, vaccination remains the best prophylaxis against a selected few. Regardless of these shortcomings, there are an increasing number of case reports that successfully treat arboviral encephalitis with high doses of intravenous immunoglobulins. DISCUSSION: To our knowledge, high dose intravenous immunoglobulin has not been tested systematically for treating severe cases of tick-borne encephalitis. Antibody-dependent enhancement has been suspected, but not proven, in several juvenile cases of tick-borne encephalitis. Although antibody-dependent enhancement during secondary infection with dengue virus has been documented, no adverse effects were noticed in a controlled study of high dose intravenous immunoglobulin therapy for dengue-associated thrombocytopenia. The inflammation-dampening therapeutic effects of generic high dose intravenous immunoglobulins may override the antibody-dependent enhancement effects that are potentially induced by cross-reactive antibodies or by virus-specific antibodies at sub-neutralizing levels. SUMMARY: Analogous to the increasing number of case reports on the successful treatment of other arboviral encephalitides with high dose intravenous immunoglobulins, we postulate whether it may be possible to also treat severe cases of tick-borne encephalitis with high dose intravenous immunoglobulins as early in the course of the disease as possible.
- MeSH
- intravenózní imunoglobuliny aplikace a dávkování škodlivé účinky imunologie MeSH
- klíšťová encefalitida imunologie terapie virologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- protilátky virové aplikace a dávkování škodlivé účinky imunologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- intravenózní imunoglobuliny MeSH
- protilátky virové MeSH
BACKGROUND: The clinical course of tick-borne encephalitis (TBE), a disease caused by TBE virus, ranges from asymptomatic or mild influenza-like infection to severe debilitating encephalitis or encephalomyelitis. Despite the medical importance of this disease, some crucial steps in the development of encephalitis remain poorly understood. In particular, the basis of the disease severity is largely unknown. METHODS: TBE virus growth, neutralizing antibody response, key cytokine and chemokine mRNA production and changes in mRNA levels of cell surface markers of immunocompetent cells in brain were measured in mice with different susceptibilities to TBE virus infection. RESULTS: An animal model of TBE based on BALB/c-c-STS/A (CcS/Dem) recombinant congenic mouse strains showing different severities of the infection in relation to the host genetic background was developed. After subcutaneous inoculation of TBE virus, BALB/c mice showed medium susceptibility to the infection, STS mice were resistant, and CcS-11 mice were highly susceptible. The resistant STS mice showed lower and delayed viremia, lower virus production in the brain and low cytokine/chemokine mRNA production, but had a strong neutralizing antibody response. The most sensitive strain (CcS-11) failed in production of neutralizing antibodies, but exhibited strong cytokine/chemokine mRNA production in the brain. After intracerebral inoculation, all mouse strains were sensitive to the infection and had similar virus production in the brain, but STS mice survived significantly longer than CcS-11 mice. These two strains also differed in the expression of key cytokines/chemokines, particularly interferon gamma-induced protein 10 (IP-10/CXCL10) and monocyte chemotactic protein-1 (MCP-1/CCL2) in the brain. CONCLUSIONS: Our data indicate that the genetic control is an important factor influencing the clinical course of TBE. High neutralizing antibody response might be crucial for preventing host fatality, but high expression of various cytokines/chemokines during TBE can mediate immunopathology and be associated with more severe course of the infection and increased fatality.
- MeSH
- buněčná imunita imunologie MeSH
- centrální nervový systém patologie MeSH
- chemokiny biosyntéza MeSH
- cytokiny biosyntéza MeSH
- genotyp MeSH
- klíšťová encefalitida imunologie patologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- membránové proteiny biosyntéza MeSH
- messenger RNA biosyntéza genetika MeSH
- mozek - chemie fyziologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- náchylnost k nemoci MeSH
- neutralizující protilátky biosyntéza MeSH
- odolnost vůči nemocem MeSH
- plakové testy MeSH
- protilátky virové biosyntéza genetika MeSH
- virová nálož MeSH
- viry klíšťové encefalitidy * MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemokiny MeSH
- cytokiny MeSH
- membránové proteiny MeSH
- messenger RNA MeSH
- neutralizující protilátky MeSH
- protilátky virové MeSH