Nejvíce citovaný článek - PubMed ID 22618232
Preferential binding of IFI16 protein to cruciform structure and superhelical DNA
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
- Klíčová slova
- DNA/RNA binding protein, biomarkers, cancer, mutation, targeted treatment,
- MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA MeSH
- lidé MeSH
- nádory * genetika metabolismus MeSH
- proteiny vázající RNA * metabolismus MeSH
- RNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA MeSH
- proteiny vázající RNA * MeSH
- RNA MeSH
Cruciforms occur when inverted repeat sequences in double-stranded DNA adopt intra-strand hairpins on opposing strands. Biophysical and molecular studies of these structures confirm their characterization as four-way junctions and have demonstrated that several factors influence their stability, including overall chromatin structure and DNA supercoiling. Here, we review our understanding of processes that influence the formation and stability of cruciforms in genomes, covering the range of sequences shown to have biological significance. It is challenging to accurately sequence repetitive DNA sequences, but recent advances in sequencing methods have deepened understanding about the amounts of inverted repeats in genomes from all forms of life. We highlight that, in the majority of genomes, inverted repeats are present in higher numbers than is expected from a random occurrence. It is, therefore, becoming clear that inverted repeats play important roles in regulating many aspects of DNA metabolism, including replication, gene expression, and recombination. Cruciforms are targets for many architectural and regulatory proteins, including topoisomerases, p53, Rif1, and others. Notably, some of these proteins can induce the formation of cruciform structures when they bind to DNA. Inverted repeat sequences also influence the evolution of genomes, and growing evidence highlights their significance in several human diseases, suggesting that the inverted repeat sequences and/or DNA cruciforms could be useful therapeutic targets in some cases.
- Klíčová slova
- DNA base sequence, DNA structure, DNA supercoiling, cruciform, epigenetics, genome stability, inverted repeat, replication, transcription,
- MeSH
- DNA genetika MeSH
- konformace nukleové kyseliny MeSH
- křížová struktura DNA MeSH
- lidé MeSH
- nukleové kyseliny * MeSH
- obrácené repetice MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- křížová struktura DNA MeSH
- nukleové kyseliny * MeSH
Z-DNA and Z-RNA are functionally important left-handed structures of nucleic acids, which play a significant role in several molecular and biological processes including DNA replication, gene expression regulation and viral nucleic acid sensing. Most proteins that have been proven to interact with Z-DNA/Z-RNA contain the so-called Zα domain, which is structurally well conserved. To date, only eight proteins with Zα domain have been described within a few organisms (including human, mouse, Danio rerio, Trypanosoma brucei and some viruses). Therefore, this paper aimed to search for new Z-DNA/Z-RNA binding proteins in the complete PDB structures database and from the AlphaFold2 protein models. A structure-based similarity search found 14 proteins with highly similar Zα domain structure in experimentally-defined proteins and 185 proteins with a putative Zα domain using the AlphaFold2 models. Structure-based alignment and molecular docking confirmed high functional conservation of amino acids involved in Z-DNA/Z-RNA, suggesting that Z-DNA/Z-RNA recognition may play an important role in a variety of cellular processes.
- Klíčová slova
- Z-DNA, Z-RNA, Zα domain, bioinformatics, protein binding,
- MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- interakční proteinové domény a motivy * MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- molekulární modely * MeSH
- proteiny vázající RNA chemie metabolismus MeSH
- RNA chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Z-DNA chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- proteiny vázající RNA MeSH
- RNA MeSH
- Z-DNA MeSH
The importance of gene expression regulation in viruses based upon G-quadruplex may point to its potential utilization in therapeutic targeting. Here, we present analyses as to the occurrence of putative G-quadruplex-forming sequences (PQS) in all reference viral dsDNA genomes and evaluate their dependence on PQS occurrence in host organisms using the G4Hunter tool. PQS frequencies differ across host taxa without regard to GC content. The overlay of PQS with annotated regions reveals the localization of PQS in specific regions. While abundance in some, such as repeat regions, is shared by all groups, others are unique. There is abundance within introns of Eukaryota-infecting viruses, but depletion of PQS in introns of bacteria-infecting viruses. We reveal a significant positive correlation between PQS frequencies in dsDNA viruses and corresponding hosts from archaea, bacteria, and eukaryotes. A strong relationship between PQS in a virus and its host indicates their close coevolution and evolutionarily reciprocal mimicking of genome organization.
- Klíčová slova
- G-quadruplex, G4Hunter, bioinformatics, coevolution, dsDNA, host, virus,
- MeSH
- Archaea virologie MeSH
- Bacteria virologie MeSH
- DNA genetika MeSH
- G-kvadruplexy * MeSH
- genom virový * MeSH
- genom MeSH
- lidé MeSH
- regulace genové exprese MeSH
- virové proteiny genetika MeSH
- viry genetika MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- virové proteiny MeSH
Nucleic acid-binding proteins are traditionally divided into two categories: With the ability to bind DNA or RNA. In the light of new knowledge, such categorizing should be overcome because a large proportion of proteins can bind both DNA and RNA. Another even more important features of nucleic acid-binding proteins are so-called sequence or structure specificities. Proteins able to bind nucleic acids in a sequence-specific manner usually contain one or more of the well-defined structural motifs (zinc-fingers, leucine zipper, helix-turn-helix, or helix-loop-helix). In contrast, many proteins do not recognize nucleic acid sequence but rather local DNA or RNA structures (G-quadruplexes, i-motifs, triplexes, cruciforms, left-handed DNA/RNA form, and others). Finally, there are also proteins recognizing both sequence and local structural properties of nucleic acids (e.g., famous tumor suppressor p53). In this mini-review, we aim to summarize current knowledge about the amino acid composition of various types of nucleic acid-binding proteins with a special focus on significant enrichment and/or depletion in each category.
- Klíčová slova
- DNA, G-quadruplex, RNA, Z-DNA, Z-RNA, amino acid composition, cruciform, i-motif, protein binding, triplex,
- MeSH
- DNA vazebné proteiny genetika MeSH
- DNA genetika ultrastruktura MeSH
- G-kvadruplexy MeSH
- konformace nukleové kyseliny * MeSH
- leucinové zipy genetika MeSH
- lidé MeSH
- nukleoproteiny genetika ultrastruktura MeSH
- RNA chemie ultrastruktura MeSH
- sekvence aminokyselin genetika MeSH
- transportní proteiny genetika ultrastruktura MeSH
- Z-DNA MeSH
- zinkové prsty genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA MeSH
- nukleoproteiny MeSH
- RNA MeSH
- transportní proteiny MeSH
- Z-DNA MeSH
The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5'RRRCWWGYYY3' sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.
- Klíčová slova
- consensus sequence, cruciform, local DNA structures, p53, protein-DNA interactions,
- MeSH
- DNA chemie metabolismus MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- konsenzuální sekvence MeSH
- lidé MeSH
- molekulární modely MeSH
- nádorový supresorový protein p53 chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- nádorový supresorový protein p53 MeSH
p73 is a member of the p53 protein family and has essential functions in several signaling pathways involved in development, differentiation, DNA damage responses and cancer. As a transcription factor, p73 achieves these functions by binding to consensus DNA sequences and p73 shares at least partial target DNA binding sequence specificity with p53. Transcriptional activation by p73 has been demonstrated for more than fifty p53 targets in yeast and/or human cancer cell lines. It has also been shown previously that p53 binding to DNA is strongly dependent on DNA topology and the presence of inverted repeats that can form DNA cruciforms, but whether p73 transcriptional activity has similar dependence has not been investigated. Therefore, we evaluated p73 binding to a set of p53-response elements with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures. We show by a yeast-based assay that transactivation in vivo correlated more with the relative propensity of a response element to form cruciforms than to its expected in vitro DNA binding affinity. Structural features of p73 target sites are therefore likely to be an important determinant of its transactivation function.
- MeSH
- aktivace transkripce MeSH
- konformace nukleové kyseliny MeSH
- kvasinky genetika metabolismus MeSH
- lidé MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- obrácené repetice * MeSH
- protein p73 chemie genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- vazba proteinů MeSH
- vazebná místa * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorový supresorový protein p53 MeSH
- protein p73 MeSH
Interferon-inducible protein 16 (IFI16) is a member of the HIN-200 protein family, containing two HIN domains and one PYRIN domain. IFI16 acts as a sensor of viral and bacterial DNA and is important for innate immune responses. IFI16 binds DNA and binding has been described to be DNA length-dependent, but a preference for supercoiled DNA has also been demonstrated. Here we report a specific preference of IFI16 for binding to quadruplex DNA compared to other DNA structures. IFI16 binds to quadruplex DNA with significantly higher affinity than to the same sequence in double stranded DNA. By circular dichroism (CD) spectroscopy we also demonstrated the ability of IFI16 to stabilize quadruplex structures with quadruplex-forming oligonucleotides derived from human telomere (HTEL) sequences and the MYC promotor. A novel H/D exchange mass spectrometry approach was developed to assess protein interactions with quadruplex DNA. Quadruplex DNA changed the IFI16 deuteration profile in parts of the PYRIN domain (aa 0-80) and in structurally identical parts of both HIN domains (aa 271-302 and aa 586-617) compared to single stranded or double stranded DNAs, supporting the preferential affinity of IFI16 for structured DNA. Our results reveal the importance of quadruplex DNA structure in IFI16 binding and improve our understanding of how IFI16 senses DNA. IFI16 selectivity for quadruplex structure provides a mechanistic framework for IFI16 in immunity and cellular processes including DNA damage responses and cell proliferation.
- MeSH
- DNA chemie genetika metabolismus MeSH
- fosfoproteiny chemie genetika metabolismus MeSH
- G-kvadruplexy * MeSH
- jaderné proteiny chemie genetika metabolismus MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- lidé MeSH
- responzivní elementy genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- fosfoproteiny MeSH
- IFI16 protein, human MeSH Prohlížeč
- jaderné proteiny MeSH