Nejvíce citovaný článek - PubMed ID 26062516
Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution
In most studied eukaryotes, chromosomes are monocentric, with centromere activity confined to a single region. However, the rush family (Juncaceae) includes species with both monocentric (Juncus) and holocentric (Luzula) chromosomes, where centromere activity is distributed along the entire chromosome length. Here, we combine chromosome-scale genome assembly, epigenetic analysis, immuno-FISH and super-resolution microscopy to study the transition to holocentricity in Luzula sylvatica. We report repeat-based holocentromeres with an irregular distribution of features along the chromosomes. Luzula sylvatica holocentromeres are predominantly associated with two satellite DNA repeats (Lusy1 and Lusy2), while CENH3 also binds satellite-free gene-poor regions. Comparative repeat analysis suggests that Lusy1 plays a crucial role in centromere function across most Luzula species. Furthermore, synteny analysis between L. sylvatica (n = 6) and Juncus effusus (n = 21) suggests that holocentric chromosomes in Luzula could have arisen from chromosome fusions of ancestral monocentric chromosomes, accompanied by the expansion of CENH3-associated satellite repeats.
- MeSH
- centromera * genetika MeSH
- chromozomy rostlin * genetika MeSH
- DNA rostlinná genetika MeSH
- genom rostlinný MeSH
- hybridizace in situ fluorescenční MeSH
- molekulární evoluce MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- satelitní DNA * genetika MeSH
- syntenie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA rostlinná MeSH
- satelitní DNA * MeSH
Centromere is the chromosomal site of kinetochore assembly and microtubule attachment for chromosome segregation. Given its importance, markers that allow specific labeling of centromeric chromatin throughout the cell cycle and across all chromosome types are sought for facilitating various centromere studies. Antibodies against the N-terminal region of CENH3 are commonly used for this purpose, since CENH3 is the near-universal marker of functional centromeres. However, because the N-terminal region of CENH3 is highly variable among plant species, antibodies directed against this region usually function only in a small group of closely related species. As a more versatile alternative, we present here antibodies targeted to the conserved domains of two outer kinetochore proteins, KNL1 and NDC80. Sequence comparison of these domains across more than 350 plant species revealed a high degree of conservation, particularly within a six amino acid motif, FFGPVS in KNL1, suggesting that both antibodies would function in a wide range of plant species. This assumption was confirmed by immunolabeling experiments in angiosperm (monocot and dicot) and gymnosperm species, including those with mono-, holo-, and meta-polycentric chromosomes. In addition to centromere labeling on condensed chromosomes during cell division, both antibodies detected the corresponding regions in the interphase nuclei of most species tested. These results demonstrated that KNL1 and NDC80 are better suited for immunolabeling centromeres than CENH3, because antibodies against these proteins offer incomparably greater versatility across different plant species which is particularly convenient for studying the organization and function of the centromere in non-model species.
- Klíčová slova
- CENH3, Centromere, KNL1, NDC80, immunolabeling, kinetochore,
- MeSH
- centromera * MeSH
- chromatin MeSH
- kinetochory * MeSH
- rostlinné proteiny * genetika MeSH
- segregace chromozomů MeSH
- sekvence aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- rostlinné proteiny * MeSH
BACKGROUND AND AIMS: While variation in genome size and chromosome numbers and their consequences are often investigated in plants, the biological relevance of variation in chromosome size remains poorly known. Here, we examine genome and mean chromosome size in the cyperid clade (families Cyperaceae, Juncaceae and Thurniaceae), which is the largest vascular plant lineage with predominantly holocentric chromosomes. METHODS: We measured genome size in 436 species of cyperids using flow cytometry, and augment these data with previously published datasets. We then separately compared genome and mean chromosome sizes (2C/2n) amongst the major lineages of cyperids and analysed how these two genomic traits are associated with various environmental factors using phylogenetically informed methods. KEY RESULTS: We show that cyperids have the smallest mean chromosome sizes recorded in seed plants, with a large divergence between the smallest and largest values. We found that cyperid species with smaller chromosomes have larger geographical distributions and that there is a strong inverse association between mean chromosome size and number across this lineage. CONCLUSIONS: The distinct patterns in genome size and mean chromosome size across the cyperids might be explained by holokinetic drive. The numerous small chromosomes might function to increase genetic diversity in this lineage where crossovers are limited during meiosis.
- Klíčová slova
- Chromosome number, Cyperaceae, Juncaceae, Thurniaceae, chromosome size, distribution range size, genome size, holocentric chromosomes, holokinetic drive,
- MeSH
- chromozomy rostlin * genetika MeSH
- délka genomu MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- molekulární evoluce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel's anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel's early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
- Klíčová slova
- FISH, NGS, TRAP, eukaryotic tree of life, interstitial telomere sequences, retroelements, satellite, subtelomere structure, telomerase RNA, telomere evolution,
- MeSH
- DNA MeSH
- lidé MeSH
- repetitivní sekvence nukleových kyselin MeSH
- satelitní DNA * MeSH
- sekvence nukleotidů MeSH
- telomery * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- satelitní DNA * MeSH
Centromere drive model describes an evolutionary process initiated by centromeric repeats expansion, which leads to the recruitment of excess kinetochore proteins and consequent preferential segregation of an expanded centromere to the egg during female asymmetric meiosis. In response to these selfish centromeres, the histone protein CenH3, which recruits kinetochore components, adaptively evolves to restore chromosomal parity and counter the detrimental effects of centromere drive. Holocentric chromosomes, whose kinetochores are assembled along entire chromosomes, have been hypothesized to prevent expanded centromeres from acquiring a selective advantage and initiating centromere drive. In such a case, CenH3 would be subjected to less frequent or no adaptive evolution. Using codon substitution models, we analyzed 36 CenH3 sequences from 35 species of the holocentric family Cyperaceae. We found 10 positively selected codons in the CenH3 gene [six codons in the N-terminus and four in the histone fold domain (HFD)] and six branches of its phylogeny along which the positive selection occurred. One of the positively selected codons was found in the centromere targeting domain (CATD) that directly interacts with DNA and its mutations may be important in centromere drive suppression. The frequency of these positive selection events was comparable to the frequency of positive selection in monocentric clades with asymmetric female meiosis. Taken together, these results suggest that preventing centromere drive is not the primary adaptive role of holocentric chromosomes, and their ability to suppress it likely depends on their kinetochore structure in meiosis.
- Klíčová slova
- CenH3, asymmetric meiosis, centromere drive, holocentric chromosomes, meiotic drive, monocentric chromosomes, symmetric meiosis,
- Publikační typ
- časopisecké články MeSH
Chromosome numbers have been widely used to describe the most fundamental genomic attribute of an organism or a lineage. Although providing strong phylogenetic signal, chromosome numbers vary remarkably among eukaryotes at all levels of taxonomic resolution. Changes in chromosome numbers regularly serve as indication of major genomic events, most notably polyploidy and dysploidy. Here, we review recent advancements in our ability to make inferences regarding historical events that led to alterations in the number of chromosomes of a lineage. We first describe the mechanistic processes underlying changes in chromosome numbers, focusing on structural chromosomal rearrangements. Then, we focus on experimental procedures, encompassing comparative cytogenomics and genomics approaches, and on computational methodologies that are based on explicit models of chromosome-number evolution. Together, these tools offer valuable predictions regarding historical events that have changed chromosome numbers and genome structures, as well as their phylogenetic and temporal placements.
- Klíčová slova
- chromosome numbers, cytogenomics, dysploidy, genome evolution, phylogenetic models, polyploidy,
- MeSH
- chromozomy rostlin * MeSH
- genom rostlinný MeSH
- genomika MeSH
- malování chromozomů MeSH
- modely genetické * MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: Ultraviolet-B radiation (UV-B) radiation damages the DNA, cells and photosynthetic apparatus of plants. Plants commonly prevent this damage by synthetizing UV-B-protective compounds. Recent laboratory experiments in Arabidopsis and cucumber have indicated that plants can also respond to UV-B stress with endopolyploidy. Here we test the generality of this response in natural plant populations, considering their monocentric or holocentric chromosomal structure. METHODS: We measured the endopolyploidy index (flow cytometry) and the concentration of UV-B-protective compounds in leaves of 12 herbaceous species (1007 individuals) from forest interiors and neighbouring clearings where they were exposed to increased UV-B radiation (103 forest + clearing populations). We then analysed the data using phylogenetic mixed models. KEY RESULTS: The concentration of UV-B protectives increased with UV-B doses estimated from hemispheric photographs of the sky above sample collection sites, but the increase was more rapid in species with monocentric chromosomes. Endopolyploidy index increased with UV-B doses and with concentrations of UV-B-absorbing compounds only in species with monocentric chromosomes, while holocentric species responded negligibly. CONCLUSIONS: Endopolyploidy seems to be a common response to increased UV-B in monocentric plants. Low sensitivity to UV-B in holocentric species might relate to their success in high-UV-stressed habitats and corroborates the hypothesized role of holocentric chromosomes in plant terrestrialization.
- Klíčová slova
- Endopolyploidy, UV-B-absorbing compounds, endoreduplication index, flow cytometry, holocentric chromosomes, monocentric chromosomes, natural population, ultraviolet radiation,
- MeSH
- Arabidopsis * MeSH
- chromozomy * MeSH
- fylogeneze MeSH
- lidé MeSH
- listy rostlin MeSH
- ultrafialové záření MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tick cell lines are an easy-to-handle system for the study of viral and bacterial infections and other aspects of tick cellular processes. Tick cell cultures are often continuously cultivated, as freezing can affect their viability. However, the long-term cultivation of tick cells can influence their genome stability. In the present study, we investigated karyotype and genome size of tick cell lines. Though 16S rDNA sequencing showed the similarity between Ixodes spp. cell lines at different passages, their karyotypes differed from 2n = 28 chromosomes for parental Ixodes spp. ticks, and both increase and decrease in chromosome numbers were observed. For example, the highly passaged Ixodes scapularis cell line ISE18 and Ixodes ricinus cell lines IRE/CTVM19 and IRE/CTVM20 had modal chromosome numbers 48, 23 and 48, respectively. Also, the Ornithodoros moubata cell line OME/CTVM22 had the modal chromosome number 33 instead of 2n = 20 chromosomes for Ornithodoros spp. ticks. All studied tick cell lines had a larger genome size in comparison to the genomes of the parental ticks. Thus, highly passaged tick cell lines can be used for research purposes, but possible differences in encoded genetic information and downstream cellular processes, between different cell populations, should be taken into account.
- MeSH
- buněčné kultury metody MeSH
- buněčné linie MeSH
- Ixodidae genetika MeSH
- karyotyp MeSH
- klíšťata genetika růst a vývoj MeSH
- Ornithodoros genetika MeSH
- RNA ribozomální 16S genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Centromeres are essential for proper chromosome segregation to the daughter cells during mitosis and meiosis. Chromosomes of most eukaryotes studied so far have regional centromeres that form primary constrictions on metaphase chromosomes. These monocentric chromosomes vary from point centromeres to so-called "meta-polycentromeres", with multiple centromere domains in an extended primary constriction, as identified in Pisum and Lathyrus species. However, in various animal and plant lineages centromeres are distributed along almost the entire chromosome length. Therefore, they are called holocentromeres. In holocentric plants, centromere-specific proteins, at which spindle fibers usually attach, are arranged contiguously (line-like), in clusters along the chromosomes or in bands. Here, we summarize findings of ultrastructural investigations using immunolabeling with centromere-specific antibodies and super-resolution microscopy to demonstrate the structural diversity of plant centromeres. A classification of the different centromere types has been suggested based on the distribution of spindle attachment sites. Based on these findings we discuss the possible evolution and advantages of holocentricity, and potential strategies to segregate holocentric chromosomes correctly.
- Klíčová slova
- CENH3, CENP-A, Cuscuta, Lathyrus, Luzula, Pisum, Rhynchospora, clustered centromere, holocentromere, microtubule, monocentromere, structured illumination microscopy,
- MeSH
- buněčný cyklus MeSH
- centromera metabolismus MeSH
- chromozomy rostlin metabolismus MeSH
- mikroskopie * MeSH
- molekulární evoluce MeSH
- rostliny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Chromosomal rearrangements (e.g., fusions/fissions) have the potential to drive speciation. However, their accumulation in a population is generally viewed as unlikely, because chromosomal heterozygosity should lead to meiotic problems and aneuploid gametes. Canonical meiosis involves segregation of homologous chromosomes in meiosis I and sister chromatid segregation during meiosis II. In organisms with holocentric chromosomes, which are characterized by kinetic activity distributed along almost the entire chromosome length, this order may be inverted depending on their metaphase I orientation. Here we analyzed the evolutionary role of this intrinsic versatility of holocentric chromosomes, which is not available to monocentric ones, by studying F1 to F4 hybrids between two chromosomal races of the Wood White butterfly (Leptidea sinapis), separated by at least 24 chromosomal fusions/fissions. We found that these chromosomal rearrangements resulted in multiple meiotic multivalents, and, contrary to the theoretical prediction, the hybrids displayed relatively high reproductive fitness (42% of that of the control lines) and regular behavior of meiotic chromosomes. In the hybrids, we also discovered inverted meiosis, in which the first and critical stage of chromosome number reduction was replaced by the less risky stage of sister chromatid separation. We hypothesize that the ability to invert the order of the main meiotic events facilitates proper chromosome segregation and hence rescues fertility and viability in chromosomal hybrids, potentially promoting dynamic karyotype evolution and chromosomal speciation.
- Klíčová slova
- chromosomal evolution, chromosomal rearrangement, hybridization, inverted meiosis, speciation,
- MeSH
- chiméra * genetika metabolismus MeSH
- chromatidy * genetika metabolismus MeSH
- chromozomy hmyzu genetika metabolismus MeSH
- metafáze fyziologie MeSH
- motýli * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH