Most cited article - PubMed ID 26959244
Mutated Huntingtin Causes Testicular Pathology in Transgenic Minipig Boars
In the last two decades, a school of thought emerged that perceives male reproductive health, testicular function, and sperm output as a sentry for general, somatic health. Large-scale epidemiologic studies have already linked the reduced sperm count to increased risk of chronic somatic disease (e.g., cancer, cardiovascular, neurological and bone diseases), yet most of these studies have not taken full advantage of advanced andrological analysis. Altered proteostasis, i.e., the disbalance between protein synthesis and turnover, is a common denominator of many diseases, including but not limited to cancer and neurodegenerative diseases. This chapter introduces the concept of cellular proteostasis as a measure of sperm structural and functional integrity and an endpoint of varied impacts on spermiogenesis and sperm maturation, including heritability, general health, lifestyle, and occupational and environmental reprotoxic exposure. Special consideration is given to small molecule protein modifiers, sperm-binding seminal plasma proteins, zinc-interacting proteins, and redox proteins responsible for the maintenance of protein structure and the protection of spermatozoa from oxidative damage. While the main focus is on human male infertility, serious consideration is given to relevant animal models, and in particular to male food animals with extensive records of fertility from artificial insemination services. Altogether, the proteostatic biomarker discovery and validation studies set the stage for the integration of proteomics of sperm proteostasis with genomic and high throughput phenomic approaches to benefit both human and animal reproductive medicine.
- Keywords
- Biomarker, Infertility, Omics, Proteasome, Proteostasis, Seminal plasma, Sperm, Thioredoxin, Ubiquitin,
- MeSH
- Fertility * physiology MeSH
- Proteostasis * physiology MeSH
- Humans MeSH
- Infertility, Male * metabolism genetics pathology physiopathology MeSH
- Spermatogenesis * MeSH
- Spermatozoa * metabolism pathology physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
(1) Background: Huntington's disease (HD) is rare incurable hereditary neurodegenerative disorder caused by CAG repeat expansion in the gene coding for the protein huntingtin (HTT). Mutated huntingtin (mHTT) undergoes fragmentation and accumulation, affecting cellular functions and leading to neuronal cell death. Porcine models of HD are used in preclinical testing of currently emerging disease modifying therapies. Such therapies are aimed at reducing mHTT expression, postpone the disease onset, slow down the progression, and point out the need of biomarkers to monitor disease development and therapy efficacy. Recently, extracellular vesicles (EVs), particularly exosomes, gained attention as possible carriers of disease biomarkers. We aimed to characterize HTT and mHTT forms/fragments in blood plasma derived EVs in transgenic (TgHD) and knock-in (KI-HD) porcine models, as well as in HD patients' plasma. (2) Methods: Small EVs were isolated by ultracentrifugation and HTT forms were visualized by western blotting. (3) Results: The full length 360 kDa HTT co-isolated with EVs from both the pig model and HD patient plasma. In addition, a ~70 kDa mutant HTT fragment was specific for TgHD pigs. Elevated total huntingtin levels in EVs from plasma of HD groups compared to controls were observed in both pig models and HD patients, however only in TgHD were they significant (p = 0.02). (4) Conclusions: Our study represents a valuable initial step towards the characterization of EV content in the search for HD biomarkers.
- Keywords
- Huntington´s disease, KI-HD, TgHD, biomarker, exosome, extracellular vesicle, fragment, huntingtin, neurodegenerative disease, pig model,
- MeSH
- Biomarkers MeSH
- Extracellular Vesicles * metabolism MeSH
- Huntington Disease * metabolism MeSH
- Plasma metabolism MeSH
- Humans MeSH
- Swine MeSH
- Nerve Tissue Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers MeSH
- Nerve Tissue Proteins MeSH
Genetically modified rodent models of Huntington's disease (HD) have been especially valuable to our understanding of HD pathology and the mechanisms by which the mutant HTT gene alters physiology. However, due to inherent differences in genetics, neuroanatomy, neurocircuitry and neurophysiology, animal models do not always faithfully or fully recapitulate human disease features or adequately predict a clinical response to treatment. Therefore, conducting translational studies of candidate HD therapeutics only in a single species (i.e. mouse disease models) may not be sufficient. Large animal models of HD have been shown to be valuable to the HD research community and the expectation is that the need for translational studies that span rodent and large animal models will grow. Here, we review the large animal models of HD that have been created to date, with specific commentary on differences between the models, the strengths and disadvantages of each, and how we can advance useful models to study disease pathophysiology, biomarker development and evaluation of promising therapeutics.
- Keywords
- Minipigs, nonhuman primates, sheep, therapeutics,
- MeSH
- Animals, Genetically Modified * MeSH
- Huntington Disease * genetics pathology physiopathology therapy MeSH
- Swine, Miniature MeSH
- Disease Models, Animal * MeSH
- Sheep MeSH
- Swine MeSH
- Primates MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Huntington's disease (HD) is an inherited devastating neurodegenerative disease with no known cure to date. Several therapeutic treatments for HD are in development, but their safety, tolerability and efficacy need to be tested before translation to bedside. The monogenetic nature of this disorder has enabled the generation of transgenic animal models carrying a mutant huntingtin (mHTT) gene causing HD. A large animal model reflecting disease progression in humans would be beneficial for testing the potential therapeutic approaches. Progression of the motor, cognitive and behavioral phenotype was monitored in transgenic Huntington's disease minipigs (TgHD) expressing the N-terminal part of human mHTT. New tests were established to investigate physical activity by telemetry, and to explore the stress-induced behavioral and cognitive changes in minipigs. The longitudinal study revealed significant differences between 6- to 8-year-old TgHD animals and their wild-type (WT) controls in a majority of the tests. The telemetric study showed increased physical activity of 4.6- to 6.5-year-old TgHD boars compared to their WT counterparts during the lunch period as well as in the afternoon. Our phenotypic study indicates progression in adult TgHD minipigs and therefore this model could be suitable for longstanding preclinical studies of HD.This article has an associated First Person interview with the first author of the paper.
- Keywords
- Cognitive and behavioral studies, Huntington's disease, Large animal model, Motor, Phenotyping,
- MeSH
- Behavior, Animal physiology MeSH
- Animals, Genetically Modified MeSH
- Huntington Disease complications physiopathology MeSH
- Tongue MeSH
- Cognition physiology MeSH
- Physical Conditioning, Animal MeSH
- Longitudinal Studies MeSH
- Swine, Miniature MeSH
- Disease Models, Animal MeSH
- Motor Activity * MeSH
- Swine MeSH
- Stress, Psychological complications MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Recently developed therapeutic approaches for the treatment of Huntington's disease (HD) require preclinical testing in large animal models. The minipig is a suitable experimental animal because of its large gyrencephalic brain, body weight of 70-100 kg, long lifespan, and anatomical, physiological and metabolic resemblance to humans. The Libechov transgenic minipig model for HD (TgHD) has proven useful for proof of concept of developing new therapies. However, to evaluate the efficacy of different therapies on disease progression, a broader phenotypic characterization of the TgHD minipig is needed. In this study, we analyzed the brain tissues of TgHD minipigs at the age of 48 and 60-70 months, and compared them to wild-type animals. We were able to demonstrate not only an accumulation of different forms of mutant huntingtin (mHTT) in TgHD brain, but also pathological changes associated with cellular damage caused by mHTT. At 48 months, we detected pathological changes that included the demyelination of brain white matter, loss of function of striatal neurons in the putamen and activation of microglia. At 60-70 months, we found a clear marker of neurodegeneration: significant cell loss detected in the caudate nucleus, putamen and cortex. This was accompanied by clusters of structures accumulating in the neurites of some neurons, a sign of their degeneration that is also seen in Alzheimer's disease, and a significant activation of astrocytes. In summary, our data demonstrate age-dependent neuropathology with later onset of neurodegeneration in TgHD minipigs.
- Keywords
- Brain, Huntingtin, Large animal model, Neuropathology, TgHD,
- MeSH
- White Matter pathology ultrastructure MeSH
- Biomarkers metabolism MeSH
- Nerve Degeneration pathology MeSH
- Animals, Genetically Modified MeSH
- Genotype MeSH
- Weight Loss MeSH
- Huntington Disease pathology MeSH
- Body Mass Index MeSH
- Humans MeSH
- Swine, Miniature MeSH
- Disease Models, Animal MeSH
- Motor Cortex pathology ultrastructure MeSH
- Myelin Sheath metabolism MeSH
- Caudate Nucleus pathology ultrastructure MeSH
- Swine MeSH
- Huntingtin Protein metabolism MeSH
- Protein Aggregates MeSH
- Aging pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Htt protein, mouse MeSH Browser
- Huntingtin Protein MeSH
- Protein Aggregates MeSH
Skeletal muscle wasting and atrophy is one of the more severe clinical impairments resulting from the progression of Huntington's disease (HD). Mitochondrial dysfunction may play a significant role in the etiology of HD, but the specific condition of mitochondria in muscle has not been widely studied during the development of HD. To determine the role of mitochondria in skeletal muscle during the early stages of HD, we analyzed quadriceps femoris muscle from 24-, 36-, 48- and 66-month-old transgenic minipigs that expressed the N-terminal portion of mutated human huntingtin protein (TgHD) and age-matched wild-type (WT) siblings. We found altered ultrastructure of TgHD muscle tissue and mitochondria. There was also significant reduction of activity of citrate synthase and respiratory chain complexes (RCCs) I, II and IV, decreased quantity of oligomycin-sensitivity conferring protein (OSCP) and the E2 subunit of pyruvate dehydrogenase (PDHE2), and differential expression of optic atrophy 1 protein (OPA1) and dynamin-related protein 1 (DRP1) in the skeletal muscle of TgHD minipigs. Statistical analysis identified several parameters that were dependent only on HD status and could therefore be used as potential biomarkers of disease progression. In particular, the reduction of biomarker RCCII subunit SDH30 quantity suggests that similar pathogenic mechanisms underlie disease progression in TgHD minipigs and HD patients. The perturbed biochemical phenotype was detectable in TgHD minipigs prior to the development of ultrastructural changes and locomotor impairment, which become evident at the age of 48 months. Mitochondrial disturbances may contribute to energetic depression in skeletal muscle in HD, which is in concordance with the mobility problems observed in this model.This article has an associated First Person interview with the first author of the paper.
- Keywords
- Biomarkers, Disease development, HD large animal model, Huntington's disease, Mitochondrial function, Skeletal muscle, Ultrastructure,
- MeSH
- DNA metabolism MeSH
- Energy Metabolism * MeSH
- Animals, Genetically Modified MeSH
- Huntington Disease metabolism pathology MeSH
- Muscle, Skeletal metabolism ultrastructure MeSH
- Humans MeSH
- Swine, Miniature MeSH
- Mitochondrial Proteins metabolism MeSH
- Disease Models, Animal * MeSH
- Mutation MeSH
- Oxidative Phosphorylation MeSH
- Swine MeSH
- Disease Progression MeSH
- Huntingtin Protein genetics MeSH
- Mitochondria, Muscle metabolism ultrastructure MeSH
- Body Weight MeSH
- Electron Transport MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- HTT protein, human MeSH Browser
- Mitochondrial Proteins MeSH
- Huntingtin Protein MeSH
Extracellular vesicles (EVs) are a highly attractive subject of biomedical research as possible carriers of nucleic acid and protein biomarkers. EVs released to body fluids enable indirect access to inner organs by so-called "liquid biopsies". Obtaining a high-quality EV sample with minimum contaminants is crucial for proteomic analyses using LC-MS/MS or other techniques. However, the EV content in various body fluids largely differs, which may hamper subsequent analyses. Here, we present a comparison of extracellular vesicle yields from blood plasma, cerebrospinal fluid, and seminal plasma using an experimental pig model. Pigs are widely used in biomedical research as large animal models with anatomy and physiology close to those of humans and enable studies (e.g., of the nervous system) that are unfeasible in humans. EVs were isolated from body fluids by differential centrifugation followed by ultracentrifugation. EVs were characterized according to protein yields and to the quality of the isolated vesicles (e.g., size distribution, morphology, positivity for exosome markers). In our experimental setting, substantial differences in EV amounts were identified among body fluids, with the seminal plasma being the richest EV source. The yields of pellet proteins from ultracentrifugation of 1 mL of porcine body fluids may help to estimate body fluid input volumes to obtain sufficient samples for subsequent proteomic analyses.
- Keywords
- body fluid, cerebrospinal fluid, exosome, extracellular vesicle, pig model, plasma, proteomics, seminal plasma,
- Publication type
- Journal Article MeSH
Huntington's disease (HD) is a monogenic, progressive, neurodegenerative disorder with currently no available treatment. The Libechov transgenic minipig model for HD (TgHD) displays neuroanatomical similarities to humans and exhibits slow disease progression, and is therefore more powerful than available mouse models for the development of therapy. The phenotypic characterization of this model is still ongoing, and it is essential to validate biomarkers to monitor disease progression and intervention. In this study, the behavioral phenotype (cognitive, motor and behavior) of the TgHD model was assessed, along with biomarkers for mitochondrial capacity, oxidative stress, DNA integrity and DNA repair at different ages (24, 36 and 48 months), and compared with age-matched controls. The TgHD minipigs showed progressive accumulation of the mutant huntingtin (mHTT) fragment in brain tissue and exhibited locomotor functional decline at 48 months. Interestingly, this neuropathology progressed without any significant age-dependent changes in any of the other biomarkers assessed. Rather, we observed genotype-specific effects on mitochondrial DNA (mtDNA) damage, mtDNA copy number, 8-oxoguanine DNA glycosylase activity and global level of the epigenetic marker 5-methylcytosine that we believe is indicative of a metabolic alteration that manifests in progressive neuropathology. Peripheral blood mononuclear cells (PBMCs) were relatively spared in the TgHD minipig, probably due to the lack of detectable mHTT. Our data demonstrate that neuropathology in the TgHD model has an age of onset of 48 months, and that oxidative damage and electron transport chain impairment represent later states of the disease that are not optimal for assessing interventions.This article has an associated First Person interview with the first author of the paper.
- Keywords
- DNA damage, DNA repair, HD large animal model, Huntington's disease, Mitochondrial function,
- MeSH
- 8-Hydroxy-2'-Deoxyguanosine MeSH
- Behavior, Animal * MeSH
- Nerve Degeneration pathology MeSH
- Deoxyguanosine analogs & derivatives metabolism MeSH
- Energy Metabolism MeSH
- Animals, Genetically Modified MeSH
- Genome MeSH
- Huntington Disease metabolism pathology MeSH
- Humans MeSH
- Swine, Miniature MeSH
- Mitochondria metabolism MeSH
- Disease Models, Animal MeSH
- DNA Repair MeSH
- Organ Specificity MeSH
- DNA Damage MeSH
- Swine MeSH
- Huntingtin Protein metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 8-Hydroxy-2'-Deoxyguanosine MeSH
- Deoxyguanosine MeSH
- Huntingtin Protein MeSH