Nejvíce citovaný článek - PubMed ID 27428043
Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats
The aim of the present study was to assess the autoregulatory capacity of renal blood flow (RBF) and of the pressure-natriuresis characteristics in the early phase of heart failure (HF) in rats, normotensive and with angiotensin II (ANG II)-dependent hypertension. Ren-2 transgenic rats (TGR) were employed as a model of ANG II-dependent hypertension. HF was induced by creating the aorto-caval fistula (ACF). One week after ACF creation or sham-operation, the animals were prepared for studies evaluating in vivo RBF autoregulatory capacity and the pressure-natriuresis characteristics after stepwise changes in renal arterial pressure (RAP) induced by aortic clamping. In ACF TGR the basal mean arterial pressure, RBF, urine flow (UF), and absolute sodium excretion (UNaV) were all significantly lower tha n in sham-operated TGR. In the latter, reductions in renal arterial pressure (RAP) significantly decreased RBF whereas in ACF TGR they did not change. Stepwise reductions in RAP resulted in marked decreases in UF and UNaV in sham-operated as well as in ACF TGR, however, these decreases were significantly greater in the former. Our data show that compared with sham-operated TGR, ACF TGR displayed well-maintained RBF autoregulatory capacity and improved slope of the pressure-natriuresis relationship. Thus, even though in the very early HF stage renal dysfunction was demonstrable, in the HF model of ANG II-dependent hypertensive rat such dysfunction and the subsequent HF decompensation cannot be simply ascribed to impaired renal autoregulation and pressure-natriuresis relationship.
- Klíčová slova
- Ren-2 transgenic hypertensive rat, Renal autoregulation, Renal blood flow, Sodium excretion, Volume-overload heart failure,
- MeSH
- angiotensin II farmakologie MeSH
- homeostáza MeSH
- hypertenze * MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- ledviny MeSH
- natriuréza MeSH
- potkani transgenní MeSH
- renální oběh MeSH
- sodík MeSH
- srdeční selhání * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- angiotensin II MeSH
- sodík MeSH
The aim of the study was to clarify the role of the interplay between hypertension and the renin-angiotensin system (RAS) in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury. We hypothesized that in the late phase of hypertension with already developed signs of end-organ damage, inappropriate RAS activation could impair cardiac tolerance to I/R injury. Experiments were performed in male Cyp1a1-Ren-2 transgenic rats with inducible hypertension. The early phase of ANG II-dependent hypertension was induced by 5 days and the late phase by the 13 days dietary indole-3-carbinol (I3C) administration. Noninduced rats served as controls. Echocardiography and pressure-volume analysis were performed, angiotensins' levels were measured and cardiac tolerance to ischemia/reperfusion injury was studied. The infarct size was significantly reduced (by 50%) in 13 days I3C-induced hypertensive rats with marked cardiac hypertrophy, this reduction was abolished by losartan treatment. In the late phase of hypertension there are indications of a failing heart, mainly in reduced preload recruitable stroke work (PRSW), but only nonsignificant trends in worsening of some other parameters, showing that the myocardium is in a compensated phase. The influence of the RAS depends on the balance between the vasoconstrictive and the opposed vasodilatory axis. In the initial stage of hypertension, the vasodilatory axis of the RAS prevails, and with the development of hypertension the vasoconstrictive axis of the RAS becomes stronger. We observed a clear effect of AT1 receptor blockade on maximum pressure in left ventricle, cardiac hypertrophy and ANG II levels. In conclusion, we confirmed improved cardiac tolerance to I/R injury in hypertensive hypertrophied rats and showed that, in the late phase of hypertension, the myocardium is in a compensated phase.
- Klíčová slova
- ANG II-dependent hypertension, AT1 receptor antagonist, P-V analysis, ischemia/reperfusion injury, renin-angiotensin system,
- Publikační typ
- časopisecké články MeSH
This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin system (RAS). The results were compared with standard pharmacological blockade of the RAS using angiotensin-converting enzyme inhibitor (ACEi). The rationale for employing EET-A as a new treatment approach is based on our findings that apart from increased RAS activity, untreated ACF TGR also shows kidney and left ventricle (LV) tissue deficiency of EETs. Untreated ACF TGR began to die 17 days after creating ACF and were all dead by day 84. The treatment with EET-A alone or ACEi alone improved the survival rate: in 156 days after ACF creation, it was 45.5% and 59.4%, respectively. The combined treatment with EET-A and ACEi appeared to improve the final survival to 71%; however, the difference from either single treatment regimen did not reach significance. Nevertheless, our findings support the notion that targeting the cytochrome P-450-dependent epoxygenase pathway of arachidonic acid metabolism should be considered for the treatment of HF.
We investigated the role of the interaction between hypertension and the renin-angiotensin system in the pathophysiology of myocardial ischemia/reperfusion injury. We hypothesized that in the early phase of angiotensin II (ANG II)-dependent hypertension with developed left ventricular hypertrophy, cardioprotective mechanism(s) are fully activated. The experiments were performed in transgenic rats with inducible hypertension, noninduced rats served as controls. The early phase of ANG II-dependent hypertension was induced by five-days (5 days) dietary indole-3-carbinol administration. Cardiac hypertrophy, ANG II and ANG 1-7 levels, protein expression of their receptors and enzymes were determined. Separate groups were subjected to acute myocardial ischemia/reperfusion injury, and infarct size and ventricular arrhythmias were assessed. Induced rats developed marked cardiac hypertrophy accompanied by elevated ANG levels. Ischemia/reperfusion mortality was significantly higher in induced than noninduced rats (52.1 and 25%, respectively). The blockade of AT1 receptors with losartan significantly increased survival rate in both groups. Myocardial infarct size was significantly reduced after 5 days induction (by 11%), without changes after losartan treatment. In conclusion, we confirmed improved cardiac tolerance to ischemia/reperfusion injury in hypertensive cardiohypertrophied rats and found that activation of AT1 receptors by locally produced ANG II in the heart was not the mechanism underlying infarct size reduction.
- Klíčová slova
- angiotensin II receptor antagonist, hypertension, infarct size, ischemia/reperfusion injury, renin-angiotensin system,
- Publikační typ
- časopisecké články MeSH
Cytochrome P450 (CYP-450) metabolites of arachidonic acid: epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) have established role in regulation of blood pressure (BP) and kidney function. EETs deficiency and increased renal formation of 20-HETE contribute to hypertension in spontaneously hypertensive rats (SHR). We explored the effects of 14,15-EET analog (EET-A) and of 20-HETE receptor blocker (AAA) on BP and kidney function in this model. In anesthetized SHR the responses were determined of mean arterial blood pressure (MABP), total renal (RBF), and cortical (CBF) and inner-medullary blood flows, glomerular filtration rate and renal excretion, to EET-A, 5 mg/kg, infused i.v. for 1 h to rats untreated or after blockade of endogenous EETs degradation with an inhibitor (c-AUCB) of soluble epoxide hydrolase. Also examined were the responses to AAA (10 mg/kg/h), given alone or together with EET-A. EET-A significantly increased RBF and CBF (+30% and 26%, respectively), seen already within first 30 min of infusion. The greatest increases in RBF and CBF (by about 40%) were seen after AAA, similar when given alone or combined with EET-A. MABP decreased after EET-A or AAA but not significantly after the combination thereof. In all groups, RBF, and CBF increases preceded the decrease in MABP. We found that in SHR both EET-A and AAA induced renal vasodilation but, unexpectedly, no additive effect was seen. We suggest that both agents have a definite therapeutic potential and deserve further experimental and clinical testing aimed at introduction of novel antihypertensive therapy.
- Klíčová slova
- 20-HETE antagonist, EET analog, epoxyeicosatrienoic acids, hypertension, soluble epoxide hydrolase,
- Publikační typ
- časopisecké články MeSH
Numerous studies indicate a significant role for cytochrome P-450-dependent arachidonic acid metabolites in blood pressure regulation, vascular tone, and control of renal function. Epoxyeicosatrienoic acids (EETs) exhibit a spectrum of beneficial effects, such as vasodilatory activity and anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that inhibits sodium reabsorption in the kidney. In the present study, the efficiency of EET-A (a stable analog of 14,15-EET) alone and combined with AAA, a novel receptor antagonist of 20-HETE, was tested in spontaneously hypertensive rats (SHR). Adult SHR (16 weeks old) were treated with two doses of EET-A (10 or 40 mg/kg/day). In the following experiments, we also tested selected substances in the prevention of hypertension development in young SHR (6 weeks old). Young rats were treated with EET-A or the combination of EET-A and AAA (both at 10 mg/kg/day). The substances were administered in drinking water for 4 weeks. Blood pressure was measured by telemetry. Once-a-week observation in metabolic cages was performed; urine, blood, and tissue samples were collected for further analysis. The combined treatment with AAA + EET-A exhibited antihypertensive efficiency in young SHR, which remained normotensive until the end of the observation in comparison to a control group (systolic blood pressure, 134 ± 2 versus 156 ± 5 mmHg, respectively; p < 0.05). Moreover the combined treatment also increased the nitric oxide metabolite excretion. Considering the beneficial impact of the combined treatment with EET-A and AAA in young rats and our previous positive results in adult SHR, we suggest that it is a promising therapeutic strategy not only for the treatment but also for the prevention of hypertension.
- Klíčová slova
- 20-HETE antagonist, EET analog, epoxyeicosatrienoic acids, primary hypertension, spontaneously hypertensive rats,
- Publikační typ
- časopisecké články MeSH
Epoxyeicosatrienoic acids (EETs) are also known as epoxyeicosanoids that have renal and cardiovascular actions. These renal and cardiovascular actions can be regulated by soluble epoxide hydrolase (sEH) that degrades and inactivates EETs. Extensive animal hypertension studies have determined that vascular, epithelial transport, and anti-inflammatory actions of EETs lower blood pressure and decrease renal and cardiovascular disease progression. Human studies have also supported the notion that increasing EET levels in hypertension could be beneficial. Pharmacological and genetic approaches to increase epoxyeicosanoids in several animal models and humans have found improved endothelial vascular function, increased sodium excretion, and decreased inflammation to oppose hypertension and associated renal and cardiovascular complications. These compelling outcomes support the concept that increasing epoxyeicosanoids via sEH inhibitors or EET analogs could be a valuable hypertension treatment.
- MeSH
- antihypertenziva terapeutické užití MeSH
- epoxid hydrolasy antagonisté a inhibitory metabolismus MeSH
- hypertenze farmakoterapie metabolismus patofyziologie MeSH
- ikosanoidy metabolismus terapeutické užití MeSH
- inhibitory enzymů terapeutické užití MeSH
- krevní tlak účinky léků MeSH
- lidé MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antihypertenziva MeSH
- epoxid hydrolasy MeSH
- ikosanoidy MeSH
- inhibitory enzymů MeSH
Epoxyeicosatrienoic acids (EETs) and their synthetic analogs have cardiovascular protective effects. Here, we investigated the action of a novel EET analog EET-B on the progression of post-myocardial infarction (MI) heart failure in spontaneously hypertensive rats (SHR). Adult male SHR were divided into vehicle- and EET-B (10 mg/kg/day; p.o., 9 weeks)-treated groups. After 2 weeks of treatment, rats were subjected to 30-min left coronary artery occlusion or sham operation. Systolic blood pressure (SBP) and echocardiography (ECHO) measurements were performed at the beginning of study, 4 days before, and 7 weeks after MI. At the end of the study, tissue samples were collected for histological and biochemical analyses. We demonstrated that EET-B treatment did not affect blood pressure and cardiac parameters in SHR prior to MI. Fractional shortening (FS) was decreased to 18.4 ± 1.0% in vehicle-treated MI rats compared with corresponding sham (30.6 ± 1.0%) 7 weeks following MI induction. In infarcted SHR hearts, EET-B treatment improved FS (23.7 ± 0.7%), markedly increased heme oxygenase-1 (HO-1) immunopositivity in cardiomyocytes and reduced cardiac inflammation and fibrosis (by 13 and 19%, respectively). In conclusion, these findings suggest that EET analog EET-B has beneficial therapeutic actions to reduce cardiac remodeling in SHR subjected to MI.
- Klíčová slova
- blood pressure, epoxyeicosatrienoic acid, heart failure, myocardial infarction, spontaneously hypertensive rat,
- MeSH
- hemoxygenasa-1 genetika metabolismus MeSH
- infarkt myokardu farmakoterapie genetika metabolismus patofyziologie MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- kyseliny arachidonové aplikace a dávkování chemie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- potkani inbrední SHR MeSH
- srdce patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- hemoxygenasa-1 MeSH
- kyseliny arachidonové MeSH
Epoxyeicosatrienoic acids (EETs) and their analogs have been identified as potent antihypertensive compounds with cardio- and renoprotective actions. Here, we examined the effect of EET-A, an orally active EET analog, and c-AUCB, an inhibitor of the EETs degrading enzyme soluble epoxide hydrolase, on the progression of post-myocardial infarction (MI) heart failure (HF) in normotensive Hannover Sprague-Dawley (HanSD) and in heterozygous Ren-2 transgenic rats (TGR) with angiotensin II-dependent hypertension. Adult male rats (12 weeks old) were subjected to 60-min left anterior descending (LAD) coronary artery occlusion or sham (non-MI) operation. Animals were treated with EET-A and c-AUCB (10 and 1 mg/kg/day, respectively) in drinking water, given alone or combined for 5 weeks starting 24 h after MI induction. Left ventricle (LV) function and geometry were assessed by echocardiography before MI and during the progression of HF. At the end of the study, LV function was determined by catheterization and tissue samples were collected. Ischemic mortality due to the incidence of sustained ventricular fibrillation was significantly higher in TGR than in HanSD rats (35.4 and 17.7%, respectively). MI-induced HF markedly increased LV end-diastolic pressure (Ped) and reduced fractional shortening (FS) and the peak rate of pressure development [+(dP/dt)max] in untreated HanSD compared to sham (non-MI) group [Ped: 30.5 ± 3.3 vs. 9.7 ± 1.3 mmHg; FS: 11.1 ± 1.0 vs. 40.8 ± 0.5%; +(dP/dt)max: 3890 ± 291 vs. 5947 ± 309 mmHg/s]. EET-A and c-AUCB, given alone, tended to improve LV function parameters in HanSD rats. Their combination amplified the cardioprotective effect of single therapy and reached significant differences compared to untreated HanSD controls [Ped: 19.4 ± 2.2 mmHg; FS: 14.9 ± 1.0%; +(dP/dt)max: 5278 ± 255 mmHg/s]. In TGR, MI resulted in the impairment of LV function like HanSD rats. All treatments reduced the increased level of albuminuria in TGR compared to untreated MI group, but neither single nor combined EET-based therapy improved LV function. Our results indicate that EET-based therapy attenuates the progression of post-MI HF in HanSD, but not in TGR, even though they exhibited renoprotective action in TGR hypertensive rats.
- Klíčová slova
- chronic heart failure, echocardiography, epoxyeicosatrienoic acid, hypertension, myocardial infarction, soluble epoxide hydrolase,
- Publikační typ
- časopisecké články MeSH
We hypothesized that vascular actions of 20-hydroxyeicosatetraenoic acid (20-HETE), the product of cytochrome P450 (CYP450)-dependent ω-hydroxylase, potentiate prohypertensive actions of angiotensin II (ANG II) in Cyp1a1-Ren-2 transgenic rats, a model of ANG II-dependent malignant hypertension. Therefore, we evaluated the antihypertensive effectiveness of 20-HETE receptor antagonist (AAA) in this model. Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. Treatment with AAA was started either simultaneously with induction of hypertension or 10 days later, during established hypertension. Systolic blood pressure (SBP) was monitored by radiotelemetry, indices of renal and cardiac injury, and kidney ANG II levels were determined. In I3C-induced hypertensive rats, early AAA treatment reduced SBP elevation (to 161 ± 3 compared with 199 ± 3 mmHg in untreated I3C-induced rats), reduced albuminuria, glomerulosclerosis index, and cardiac hypertrophy (P<0.05 in all cases). Untreated I3C-induced rats showed augmented kidney ANG II (405 ± 14 compared with 52 ± 3 fmol/g in non-induced rats, P<0.05) which was markedly lowered by AAA treatment (72 ± 6 fmol/g). Remarkably, in TGR with established hypertension, AAA also decreased SBP (from 187 ± 4 to 158 ± 4 mmHg, P<0.05) and exhibited organoprotective effects in addition to marked suppression of kidney ANG II levels. In conclusion, 20-HETE antagonist attenuated the development and largely reversed the established ANG II-dependent malignant hypertension, likely via suppression of intrarenal ANG II levels. This suggests that intrarenal ANG II activation by 20-HETE is important in the pathophysiology of this hypertension form.
- Klíčová slova
- 20-hydroxyeicosatetraenoic acid, cytochrome p450 metabolites, malignant hypertension, renin-angiotensin system,
- MeSH
- amidy farmakologie MeSH
- angiotensin II metabolismus MeSH
- antihypertenziva farmakologie MeSH
- blokátory receptorů AT1 pro angiotensin II farmakologie MeSH
- cytochrom P-450 CYP1A1 genetika MeSH
- hypertenze maligní chemicky indukované farmakoterapie metabolismus MeSH
- indoly toxicita MeSH
- kyseliny hydroxyeikosatetraenové antagonisté a inhibitory metabolismus MeSH
- ledviny účinky léků metabolismus MeSH
- potkani transgenní MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- 20-hydroxy-5,8,11,14-eicosatetraenoic acid MeSH Prohlížeč
- amidy MeSH
- angiotensin II MeSH
- antihypertenziva MeSH
- blokátory receptorů AT1 pro angiotensin II MeSH
- cytochrom P-450 CYP1A1 MeSH
- indole-3-carbinol MeSH Prohlížeč
- indoly MeSH
- kyseliny hydroxyeikosatetraenové MeSH