Nejvíce citovaný článek - PubMed ID 29681796
Surface Expression, Function, and Pharmacology of Disease-Associated Mutations in the Membrane Domain of the Human GluN2B Subunit
N-Methyl-d-aspartate receptors (NMDARs), encoded by GRIN genes, are ionotropic glutamate receptors playing a critical role in synaptic transmission, plasticity, and synapse development. Genome sequence analyses have identified variants in GRIN genes in patients with neurodevelopmental disorders, but the underlying disease mechanisms are not well understood. Here, we have created and evaluated a transgenic mouse line carrying a missense variant Grin2bL825V , corresponding to a de novo GRIN2B variant encoding GluN2B(L825V) found in a patient with intellectual disability (ID) and autism spectrum disorder (ASD). We used HEK293T cells expressing recombinant receptors and primary hippocampal neurons prepared from heterozygous Grin2bL825V/+ (L825V/+) and wild-type (WT) Grin2b+/+ (+/+) male and female mice to assess the functional impact of the variant. Whole-cell NMDAR currents were reduced in neurons from L825V/+ compared with +/+ mice. The peak amplitude of NMDAR-mediated evoked excitatory postsynaptic currents (NMDAR-eEPSCs) was unchanged, but NMDAR-eEPSCs in L825V/+ neurons had faster deactivation compared with +/+ neurons and were less sensitive to a GluN2B-selective antagonist ifenprodil. Together, these results suggest a decreased functional contribution of GluN2B subunits to synaptic NMDAR currents in hippocampal neurons from L825V/+ mice. The analysis of the GluN2B(L825V) subunit surface expression and synaptic localization revealed no differences compared with WT GluN2B. Behavioral testing of mice of both sexes demonstrated hypoactivity, anxiety, and impaired sensorimotor gating in the L825V/+ strain, particularly affecting males, as well as cognitive symptoms. The heterozygous L825V/+ mouse offers a clinically relevant model of GRIN2B-related ID/ASD, and our results suggest synaptic-level functional changes that may contribute to neurodevelopmental pathology.
- Klíčová slova
- GluN2B, NMDA receptors, autism spectrum disorder, mouse model, synaptic transmission,
- MeSH
- excitační postsynaptické potenciály fyziologie MeSH
- HEK293 buňky MeSH
- hipokampus metabolismus MeSH
- lidé MeSH
- missense mutace MeSH
- myši inbrední C57BL MeSH
- myši transgenní * MeSH
- myši MeSH
- neurony metabolismus MeSH
- neurovývojové poruchy * genetika patofyziologie metabolismus MeSH
- receptory N-methyl-D-aspartátu * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- NR2B NMDA receptor MeSH Prohlížeč
- receptory N-methyl-D-aspartátu * MeSH
N-methyl-D-aspartate receptors (NMDARs) are a subtype of ionotropic glutamate receptors critical for synaptic transmission and plasticity, and for the development of neural circuits. Rare or de-novo variants in GRIN genes encoding NMDAR subunits have been associated with neurodevelopmental disorders characterized by intellectual disability, developmental delay, autism, schizophrenia, or epilepsy. In recent years, some disease-associated variants in GRIN genes have been characterized using recombinant receptors expressed in non-neuronal cells, and a few variants have also been studied in neuronal preparations or animal models. Here we review the current literature on the functional evaluation of human disease-associated variants in GRIN1, GRIN2A and GRIN2B genes at all levels of analysis. Focusing on the impact of different patient variants at the level of receptor function, we discuss effects on receptor agonist and co-agonist affinity, channel open probability, and receptor cell surface expression. We consider how such receptor-level functional information may be used to classify variants as gain-of-function or loss-of-function, and discuss the limitations of this classification at the synaptic, cellular, or system level. Together this work by many laboratories worldwide yields valuable insights into NMDAR structure and function, and represents significant progress in the effort to understand and treat GRIN disorders. Keywords: NMDA receptor , GRIN genes, Genetic variants, Electrophysiology, Synapse, Animal models.
- MeSH
- genetická predispozice k nemoci MeSH
- genetická variace MeSH
- lidé MeSH
- neurovývojové poruchy genetika MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- receptory N-methyl-D-aspartátu * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- GRIN1 protein, human MeSH Prohlížeč
- N-methyl D-aspartate receptor subtype 2A MeSH Prohlížeč
- NR2B NMDA receptor MeSH Prohlížeč
- proteiny nervové tkáně MeSH
- receptory N-methyl-D-aspartátu * MeSH
BACKGROUND AND PURPOSE: Neurosteroids influence neuronal function and have multiple promising clinical applications. Direct modulation of postsynaptic neurotransmitter receptors by neurosteroids is well characterized, but presynaptic effects remain poorly understood. Here, we report presynaptic glutamate release potentiation by neurosteroids pregnanolone and pregnanolone sulfate and compare their mechanisms of action to phorbol 12,13-dibutyrate (PDBu), a mimic of the second messenger DAG. EXPERIMENTAL APPROACH: We use whole-cell patch-clamp electrophysiology and pharmacology in rat hippocampal microisland cultures and total internal reflection fluorescence (TIRF) microscopy in HEK293 cells expressing GFP-tagged vesicle priming protein Munc13-1, to explore the mechanisms of neurosteroid presynaptic modulation. KEY RESULTS: Pregnanolone sulfate and pregnanolone potentiate glutamate release downstream of presynaptic Ca2+ influx, resembling the action of a phorbol ester PDBu. PDBu partially occludes the effect of pregnanolone, but not of pregnanolone sulfate. Calphostin C, an inhibitor that disrupts DAG binding to its targets, reduces the effect PDBu and pregnanolone, but not of pregnanolone sulfate, suggesting that pregnanolone might interact with a well-known DAG/phorbol ester target Munc13-1. However, TIRF microscopy experiments found no evidence of pregnanolone-induced membrane translocation of GFP-tagged Munc13-1, suggesting that pregnanolone may regulate Munc13-1 indirectly or interact with other DAG targets. CONCLUSION AND IMPLICATIONS: We describe a novel presynaptic effect of neurosteroids pregnanolone and pregnanolone sulfate to potentiate glutamate release downstream of presynaptic Ca2+ influx. The mechanism of action of pregnanolone, but not of pregnanolone sulfate, partly overlaps with that of PDBu. Presynaptic effects of neurosteroids may contribute to their therapeutic potential in the treatment of disorders of the glutamate system.
- Klíčová slova
- Munc13-1, glutamate, neurosteroid, phorbol ester, pregnanolone, presynaptic,
- MeSH
- HEK293 buňky MeSH
- krysa rodu Rattus MeSH
- kyselina glutamová MeSH
- lidé MeSH
- neurosteroidy * MeSH
- pregnanolon * farmakologie MeSH
- sírany MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina glutamová MeSH
- neurosteroidy * MeSH
- pregnanolon * MeSH
- sírany MeSH
N-Methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors essential for synaptic plasticity and memory. Receptor activation involves glycine- and glutamate-stabilized closure of the GluN1 and GluN2 subunit ligand binding domains that is allosterically regulated by the amino-terminal domain (ATD). Using single molecule fluorescence resonance energy transfer (smFRET) to monitor subunit rearrangements in real-time, we observe a stable ATD inter-dimer distance in the Apo state and test the effects of agonists and antagonists. We find that GluN1 and GluN2 have distinct gating functions. Glutamate binding to GluN2 subunits elicits two identical, sequential steps of ATD dimer separation. Glycine binding to GluN1 has no detectable effect, but unlocks the receptor for activation so that glycine and glutamate together drive an altered activation trajectory that is consistent with ATD dimer separation and rotation. We find that protons exert allosteric inhibition by suppressing the glutamate-driven ATD separation steps, and that greater ATD separation translates into greater rotation and higher open probability.
- MeSH
- alosterická regulace MeSH
- glycin chemie metabolismus MeSH
- HEK293 buňky MeSH
- kinetika MeSH
- konfokální mikroskopie MeSH
- konformace proteinů * MeSH
- kyselina glutamová chemie metabolismus MeSH
- lidé MeSH
- molekulární modely MeSH
- multimerizace proteinu * MeSH
- receptory N-methyl-D-aspartátu chemie genetika metabolismus MeSH
- rezonanční přenos fluorescenční energie metody MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- glycin MeSH
- kyselina glutamová MeSH
- N-methyl D-aspartate receptor subtype 2A MeSH Prohlížeč
- NR2B NMDA receptor MeSH Prohlížeč
- receptory N-methyl-D-aspartátu MeSH
N-methyl-D-aspartate receptors (NMDARs) belong to a family of ionotropic glutamate receptors that play essential roles in excitatory neurotransmission and synaptic plasticity in the mammalian central nervous system (CNS). Functional NMDARs consist of heterotetramers comprised of GluN1, GluN2A-D, and/or GluN3A-B subunits, each of which contains four membrane domains (M1 through M4), an intracellular C-terminal domain, a large extracellular N-terminal domain composed of the amino-terminal domain and the S1 segment of the ligand-binding domain (LBD), and an extracellular loop between M3 and M4, which contains the S2 segment of the LBD. Both the number and type of NMDARs expressed at the cell surface are regulated at several levels, including their translation and posttranslational maturation in the endoplasmic reticulum (ER), intracellular trafficking via the Golgi apparatus, lateral diffusion in the plasma membrane, and internalization and degradation. This review focuses on the roles played by the extracellular regions of GluN subunits in ER processing. Specifically, we discuss the presence of ER retention signals, the integrity of the LBD, and critical N-glycosylated sites and disulfide bridges within the NMDAR subunits, each of these steps must pass quality control in the ER in order to ensure that only correctly assembled NMDARs are released from the ER for subsequent processing and trafficking to the surface. Finally, we discuss the effect of pathogenic missense mutations within the extracellular domains of GluN subunits with respect to ER processing of NMDARs.
- Klíčová slova
- disulfide bridges, excitatory synapse, glutamate receptor, glycosylation, posttranslational modification,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Alzheimer's disease (AD) is a complex disorder with unknown etiology. Currently, only symptomatic therapy of AD is available, comprising cholinesterase inhibitors and N-methyl-d-aspartate (NMDA) receptor antagonists. Drugs targeting only one pathological condition have generated only limited efficacy. Thus, combining two or more therapeutic interventions into one molecule is believed to provide higher benefit for the treatment of AD. In the presented study, we designed, synthesized, and biologically evaluated 15 novel fluoren-9-amine derivatives. The in silico prediction suggested both the oral availability and permeation through the blood-brain barrier (BBB). An initial assessment of the biological profile included determination of the cholinesterase inhibition and NMDA receptor antagonism at the GluN1/GluN2A and GluN1/GluN2B subunits, along with a low cytotoxicity profile in the CHO-K1 cell line. Interestingly, compounds revealed a selective butyrylcholinesterase (BChE) inhibition pattern with antagonistic activity on the NMDARs. Their interaction with butyrylcholinesterase was elucidated by studying enzyme kinetics for compound 3c in tandem with the in silico docking simulation. The docking study showed the interaction of the tricyclic core of new derivatives with Trp82 within the anionic site of the enzyme in a similar way as the template drug tacrine. From the kinetic analysis, it is apparent that 3c is a competitive inhibitor of BChE.
- Klíčová slova
- Alzheimer’s disease, N-methyl-d-aspartate receptor, acetylcholinesterase, butyrylcholinesterase, fluorene, in silico, in vitro, multi-target directed ligands,
- MeSH
- Alzheimerova nemoc farmakoterapie enzymologie genetika patologie MeSH
- butyrylcholinesterasa chemie účinky léků genetika MeSH
- CHO buňky MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- Cricetulus MeSH
- fluoreny chemie farmakologie MeSH
- hematoencefalická bariéra účinky léků MeSH
- inhibitory enzymů farmakologie MeSH
- lidé MeSH
- počítačová simulace MeSH
- receptory N-methyl-D-aspartátu antagonisté a inhibitory genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- fluorene MeSH Prohlížeč
- fluoreny MeSH
- inhibitory enzymů MeSH
- N-methyl D-aspartate receptor subtype 2A MeSH Prohlížeč
- NR2B NMDA receptor MeSH Prohlížeč
- receptory N-methyl-D-aspartátu MeSH
Although numerous pathogenic mutations have been identified in various subunits of N-methyl-D-aspartate receptors (NMDARs), ionotropic glutamate receptors that are central to glutamatergic neurotransmission, the functional effects of these mutations are often unknown. Here, we combined in silico modelling with microscopy, biochemistry, and electrophysiology in cultured HEK293 cells and hippocampal neurons to examine how the pathogenic missense mutation S688Y in the GluN1 NMDAR subunit affects receptor function and trafficking. We found that the S688Y mutation significantly increases the EC50 of both glycine and D-serine in GluN1/GluN2A and GluN1/GluN2B receptors, and significantly slows desensitisation of GluN1/GluN3A receptors. Moreover, the S688Y mutation reduces the surface expression of GluN3A-containing NMDARs in cultured hippocampal neurons, but does not affect the trafficking of GluN2-containing receptors. Finally, we found that the S688Y mutation reduces Ca2+ influx through NMDARs and reduces NMDA-induced excitotoxicity in cultured hippocampal neurons. These findings provide key insights into the molecular mechanisms that underlie the regulation of NMDAR subtypes containing pathogenic mutations.
- MeSH
- glycin farmakologie MeSH
- glycinové látky farmakologie MeSH
- HEK293 buňky MeSH
- hipokampus cytologie účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- mutace * MeSH
- neurony cytologie účinky léků metabolismus MeSH
- potkani Wistar MeSH
- proteinové domény MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- receptory N-methyl-D-aspartátu genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glycin MeSH
- glycinové látky MeSH
- GRIN1 protein, human MeSH Prohlížeč
- ligandy MeSH
- NMDA receptor A1 MeSH Prohlížeč
- proteiny nervové tkáně MeSH
- receptory N-methyl-D-aspartátu MeSH
N-methyl-D-aspartate receptor (NMDAR) hypofunction has been implicated in several neurodevelopmental disorders. NMDAR function can be augmented by positive allosteric modulators, including endogenous compounds, such as cholesterol and neurosteroid pregnenolone sulfate (PES). Here we report that PES accesses the receptor via the membrane, and its binding site is different from that of cholesterol. Alanine mutagenesis has identified residues that disrupt the steroid potentiating effect at the rat GluN1 (G638; I642) and GluN2B (W559; M562; Y823; M824) subunit. Molecular dynamics simulation indicates that, in the absence of PES, the GluN2B M1 helix residue W559 interacts with the M4 helix residue M824. In the presence of PES, the M1 and M4 helices of agonist-activated receptor rearrange, forming a tighter interaction with the GluN1 M3 helix residues G638 and I642. This stabilizes the open-state position of the GluN1 M3 helices. Together, our data identify a likely binding site for the NMDAR-positive allosteric modulator PES and describe a novel molecular mechanism by which NMDAR activity can be augmented.SIGNIFICANCE STATEMENT There is considerable interest in drugs that enhance NMDAR function and could compensate for receptor hypofunction associated with certain neuropsychiatric disorders. Positive allosteric modulators of NMDARs include an endogenous neurosteroid pregnenolone sulfate (PES), but the binding site of PES on the NMDAR and the molecular mechanism of potentiation are unknown. We use patch-clamp electrophysiology in combination with mutagenesis and in silico modeling to describe the interaction of PES with the NMDAR. Our data indicate that PES binds to the transmembrane domain of the receptor at a discrete group of residues at the GluN2B membrane helices M1 and M4 and the GluN1 helix M3, and that PES potentiates NMDAR function by stabilizing the open-state position of the GluN1 M3 helices.
- Klíčová slova
- glutamate receptors, neurosteroids, patch clamp, structure,
- MeSH
- alanin genetika MeSH
- buněčná membrána účinky léků MeSH
- cholesterol metabolismus MeSH
- elektrofyziologické jevy MeSH
- HEK293 buňky MeSH
- konformace proteinů MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metoda terčíkového zámku MeSH
- pregnenolon farmakologie MeSH
- receptory N-methyl-D-aspartátu účinky léků MeSH
- simulace molekulární dynamiky MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alanin MeSH
- cholesterol MeSH
- NMDA receptor A1 MeSH Prohlížeč
- NR2B NMDA receptor MeSH Prohlížeč
- pregnenolon MeSH
- pregnenolone sulfate MeSH Prohlížeč
- receptory N-methyl-D-aspartátu MeSH
Cholesterol is a structural component of cellular membranes particularly enriched in synapses but its role in synaptic transmission remains poorly understood. We used rat hippocampal cultures and their acute cholesterol depletion by methyl-β-cyclodextrin as a tool to describe the physiological role of cholesterol in glutamatergic synaptic transmission. Cholesterol proved to be a key molecule for the function of synapses as its depletion resulted in a significant reduction of both NMDA receptor (NMDAR) and AMPA/kainate receptor-mediated evoked excitatory postsynaptic currents (eEPSCs), by 94% and 72%, respectively. We identified two presynaptic and two postsynaptic steps of synaptic transmission which are modulated by cholesterol and explain together the above-mentioned reduction of eEPSCs. In the postsynapse, we show that physiological levels of cholesterol are important for maintaining the normal probability of opening of NMDARs and for keeping NMDARs localized in synapses. In the presynapse, our results favour the hypothesis of a role of cholesterol in the propagation of axonal action potentials. Finally, cholesterol is a negative modulator of spontaneous presynaptic glutamate release. Our study identifies cholesterol as an important endogenous regulator of synaptic transmission and provides insight into molecular mechanisms underlying the neurological manifestation of diseases associated with impaired cholesterol synthesis or decomposition.
- MeSH
- AMPA receptory metabolismus MeSH
- cholesterol farmakologie MeSH
- excitační postsynaptické potenciály účinky léků MeSH
- hipokampus účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- kyselina glutamová metabolismus MeSH
- mozková kůra účinky léků metabolismus MeSH
- nervový přenos * MeSH
- neurony účinky léků metabolismus MeSH
- potkani Wistar MeSH
- presynaptická zakončení účinky léků metabolismus MeSH
- receptory N-methyl-D-aspartátu metabolismus MeSH
- synapse účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AMPA receptory MeSH
- cholesterol MeSH
- kyselina glutamová MeSH
- receptory N-methyl-D-aspartátu MeSH
We report the first complete description of the molecular mechanisms behind the transition of the N-methyl-d-aspartate (NMDA) receptor from the state where the transmembrane domain (TMD) and the ion channel are in the open configuration to the relaxed unliganded state where the channel is closed. Using an aggregate of nearly 1 µs of unbiased all-atom implicit membrane and solvent molecular dynamics (MD) simulations we identified distinct structural states of the NMDA receptor and revealed functionally important residues (GluN1/Glu522, GluN1/Arg695, and GluN2B/Asp786). The role of the "clamshell" motion of the ligand binding domain (LBD) lobes in the structural transition is supplemented by the observed structural similarity at the level of protein domains during the structural transition, combined with the overall large rearrangement necessary for the opening and closing of the receptor. The activated and open states of the receptor are structurally similar to the liganded crystal structure, while in the unliganded receptor the extracellular domains perform rearrangements leading to a clockwise rotation of up to 45 degrees around the longitudinal axis of the receptor, which closes the ion channel. The ligand-induced rotation of extracellular domains transferred by LBD-TMD linkers to the membrane-anchored ion channel is responsible for the opening and closing of the transmembrane ion channel, revealing the properties of NMDA receptor as a finely tuned molecular machine.
- Klíčová slova
- NMDA receptor transition, glutamate receptor gating, molecular dynamics simulations, molecular modeling, open and closed state,
- MeSH
- krysa rodu Rattus MeSH
- receptory N-methyl-D-aspartátu chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- receptory N-methyl-D-aspartátu MeSH