Most cited article - PubMed ID 30096957
Sulfated Metabolites of Flavonolignans and 2,3-Dehydroflavonolignans: Preparation and Properties
BACKGROUND: Over the past two decades, the global incidence of gout has markedly increased, affecting people worldwide. Considering the side effects of xanthine oxidase (XO) inhibitor drugs (e.g. allopurinol and febuxostat) used in the treatment of hyperuricemia and gout, the potential application of phytochemicals has been widely studied. In addition, XO also takes part in the elimination of certain drugs, including 6-mercaptopurine. In the current explorative study, we aimed to examine the potential effects of tea catechins, resveratrol, silymarin flavonolignans and some of their conjugated metabolites on XO-catalyzed xanthine and 6-mercaptopurine oxidation, applying in vitro assays and modeling studies. RESULTS: Catechins, resveratrol and resveratrol conjugates exerted no or only weak inhibitory effects on XO. Silybin A, silybin B and isosilybin A were weak, silychristin was a moderate, while 2,3-dehydrosilychristin was a potent inhibitor of the enzyme. Sulfate metabolites of silybin A, silybin B and isosilybin A were considerably stronger inhibitors compared to the parent flavonolignans, and the sulfation of 2,3-dehydrosilychristin slightly increased its inhibitory potency. Silychristin was the sole flavonolignan tested, where sulfate conjugation decreased its inhibitory effect. CONCLUSION: 2,3-Dehydrosilychristin seems to be a promising candidate for examining its in vivo antihyperuricemic effects, because both the parent compound and its sulfate conjugate are highly potent inhibitors of XO. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
- Keywords
- catechins, enzyme inhibition, resveratrol, silymarin, sulfate conjugates, xanthine oxidase,
- MeSH
- Enzyme Inhibitors chemistry MeSH
- Catalysis MeSH
- Catechin * chemistry MeSH
- Humans MeSH
- Mercaptopurine * chemistry metabolism MeSH
- Oxidation-Reduction MeSH
- Resveratrol * chemistry MeSH
- Silybin chemistry MeSH
- Silymarin * chemistry MeSH
- Xanthine * chemistry metabolism MeSH
- Xanthine Oxidase * chemistry metabolism antagonists & inhibitors MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Enzyme Inhibitors MeSH
- Catechin * MeSH
- Mercaptopurine * MeSH
- Resveratrol * MeSH
- Silybin MeSH
- Silymarin * MeSH
- Xanthine * MeSH
- Xanthine Oxidase * MeSH
The preparation of pure metabolites of bioactive compounds, particularly (poly)phenols, is essential for the accurate determination of their pharmacological profiles in vivo. Since the extraction of these metabolites from biological material is tedious and impractical, they can be synthesized enzymatically in vitro by bacterial PAPS-independent aryl sulfotransferases (ASTs). However, only a few ASTs have been studied and used for (poly)phenol sulfation. This study introduces new fully characterized recombinant ASTs selected according to their similarity to the previously characterized ASTs. These enzymes, produced in Escherichia coli, were purified, biochemically characterized, and screened for the sulfation of nine flavonoids and two phenolic acids using p-nitrophenyl sulfate. All tested compounds were proved to be substrates for the new ASTs, with kaempferol and luteolin being the best converted acceptors. ASTs from Desulfofalx alkaliphile (DalAST) and Campylobacter fetus (CfAST) showed the highest efficiency in the sulfation of tested polyphenols. To demonstrate the efficiency of the present sulfation approach, a series of new authentic metabolite standards, regioisomers of kaempferol sulfate, were enzymatically produced, isolated, and structurally characterized.
- Keywords
- aryl sulfotransferase, enzymatic sulfation, kaempferol sulfate, metabolite, polyphenol,
- MeSH
- Arylsulfotransferase * metabolism chemistry genetics MeSH
- Bacterial Proteins metabolism chemistry genetics MeSH
- Biocatalysis MeSH
- Escherichia coli metabolism genetics enzymology MeSH
- Polyphenols * metabolism chemistry MeSH
- Sulfates metabolism chemistry MeSH
- Substrate Specificity MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Arylsulfotransferase * MeSH
- Bacterial Proteins MeSH
- Polyphenols * MeSH
- Sulfates MeSH
Phenolic acids are known flavonoid metabolites, which typically undergo bioconjugation during phase II of biotransformation, forming sulfates, along with other conjugates. Sulfated derivatives of phenolic acids can be synthesized by two approaches: chemoenzymatically by 3'-phosphoadenosine-5'-phosphosulfate (PAPS)-dependent sulfotransferases or PAPS-independent aryl sulfotransferases such as those from Desulfitobacterium hafniense, or chemically using SO3 complexes. Both approaches were tested with six selected phenolic acids (2-hydroxyphenylacetic acid (2-HPA), 3-hydroxyphenylacetic acid (3-HPA), 4-hydroxyphenylacetic acid (4-HPA), 3,4-dihydroxyphenylacetic acid (DHPA), 3-(4-hydroxyphenyl)propionic acid (4-HPP), and 3,4-dihydroxyphenylpropionic acid (DHPP)) to create a library of sulfated metabolites of phenolic acids. The sulfates of 3-HPA, 4-HPA, 4-HPP, DHPA, and DHPP were all obtained by the methods of chemical synthesis. In contrast, the enzymatic sulfation of monohydroxyphenolic acids failed probably due to enzyme inhibition, whereas the same reaction was successful for dihydroxyphenolic acids (DHPA and DHPP). Special attention was also paid to the counterions of the sulfates, a topic often poorly reported in synthetic works. The products obtained will serve as authentic analytical standards in metabolic studies and to determine their biological activity.
- Keywords
- aryl sulfotransferase, biotransformation, flavonoid metabolites, phenolic acids, sulfation,
- MeSH
- Phosphoadenosine Phosphosulfate * chemistry metabolism MeSH
- Hydroxybenzoates MeSH
- Sulfates metabolism MeSH
- Sulfotransferases * metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Phosphoadenosine Phosphosulfate * MeSH
- Hydroxybenzoates MeSH
- phenolic acid MeSH Browser
- Sulfates MeSH
- Sulfotransferases * MeSH
Sulfation is an important reaction in nature, and sulfated phenolic compounds are of interest as standards of mammalian phase II metabolites or pro-drugs. Such standards can be prepared using chemoenzymatic methods with aryl sulfotransferases. The aim of the present work was to obtain a large library of sulfated phenols, phenolic acids, flavonoids, and flavonolignans and optimize their HPLC (high performance liquid chromatography) analysis. Four new sulfates of 2,3,4-trihydroxybenzoic acid, catechol, 4-methylcatechol, and phloroglucinol were prepared and fully characterized using MS (mass spectrometry), 1H, and 13C NMR. The separation was investigated using HPLC with PDA (photodiode-array) detection and a total of 38 standards of phenolics and their sulfates. Different stationary (monolithic C18, C18 Polar, pentafluorophenyl, ZICpHILIC) and mobile phases with or without ammonium acetate buffer were compared. The separation results were strongly dependent on the pH and buffer capacity of the mobile phase. The developed robust HPLC method is suitable for the separation of enzymatic sulfation reaction mixtures of flavonoids, flavonolignans, 2,3-dehydroflavonolignans, phenolic acids, and phenols with PDA detection. Moreover, the method is directly applicable in conjunction with mass detection due to the low flow rate and the absence of phosphate buffer and/or ion-pairing reagents in the mobile phase.
- Keywords
- Desulfitobacterium hafniense, HPLC analysis, aryl sulfotransferase, flavonoids, phenolic acid, polyphenols, sulfates,
- MeSH
- Phenols analysis MeSH
- Flavonoids analysis MeSH
- Flavonolignans * MeSH
- Sulfates * MeSH
- Chromatography, High Pressure Liquid methods MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Phenols MeSH
- Flavonoids MeSH
- Flavonolignans * MeSH
- Sulfates * MeSH
Silymarin is known for its hepatoprotective effects. Although there is solid evidence for its protective effects against Amanita phalloides intoxication, only inconclusive data are available for alcoholic liver damage. Since silymarin flavonolignans have metal-chelating activity, we hypothesized that silymarin may influence alcoholic liver damage by inhibiting zinc-containing alcohol dehydrogenase (ADH). Therefore, we tested the zinc-chelating activity of pure silymarin flavonolignans and their effect on yeast and equine ADH. The most active compounds were also tested on bovine glutamate dehydrogenase, an enzyme blocked by zinc ions. Of the six flavonolignans tested, only 2,3-dehydroderivatives (2,3-dehydrosilybin and 2,3-dehydrosilychristin) significantly chelated zinc ions. Their effect on yeast ADH was modest but stronger than that of the clinically used ADH inhibitor fomepizole. In contrast, fomepizole strongly blocked mammalian (equine) ADH. 2,3-Dehydrosilybin at low micromolar concentrations also partially inhibited this enzyme. These results were confirmed by in silico docking of active dehydroflavonolignans with equine ADH. Glutamate dehydrogenase activity was decreased by zinc ions in a concentration-dependent manner, and this inhibition was abolished by a standard zinc chelating agent. In contrast, 2,3-dehydroflavonolignans blocked the enzyme both in the absence and presence of zinc ions. Therefore, 2,3-dehydrosilybin might have a biologically relevant inhibitory effect on ADH and glutamate dehydrogenase.
- Keywords
- alcohol dehydrogenase, chelation, dehydrosilybin, docking, flavonolignans, glutamate dehydrogenase, silybin, zinc,
- MeSH
- Alcohol Dehydrogenase antagonists & inhibitors MeSH
- Chelating Agents pharmacology MeSH
- Flavonolignans pharmacology MeSH
- Glutamate Dehydrogenase antagonists & inhibitors MeSH
- Horses MeSH
- Yeasts drug effects MeSH
- Silybin pharmacology MeSH
- Silymarin pharmacology MeSH
- Zinc isolation & purification metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Alcohol Dehydrogenase MeSH
- Chelating Agents MeSH
- Flavonolignans MeSH
- Glutamate Dehydrogenase MeSH
- Silybin MeSH
- Silymarin MeSH
- Zinc MeSH
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.
- Keywords
- Silybum marianum, chirality, dehydroflavonolignan, diastereomer, flavonoid, flavonolignan, isosilybin, milk thistle, silibinin, silybin, silychristin, silydianin, silymarin,
- MeSH
- Anti-Infective Agents chemistry pharmacology MeSH
- Antioxidants chemistry pharmacology MeSH
- Antineoplastic Agents, Phytogenic chemistry pharmacology MeSH
- Humans MeSH
- Silybin chemistry pharmacology MeSH
- Stereoisomerism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Infective Agents MeSH
- Antioxidants MeSH
- Antineoplastic Agents, Phytogenic MeSH
- Silybin MeSH
2,3-Dehydrosilybin (DHS) was previously shown to chelate and reduce both copper and iron ions. In this study, similar experiments with 2,3-dehydrosilychristin (DHSCH) showed that this congener of DHS also chelates and reduces both metals. Statistical analysis pointed to some differences between both compounds: in general, DHS appeared to be a more potent iron and copper chelator, and a copper reducing agent under acidic conditions, while DHSCH was a more potent copper reducing agent under neutral conditions. In the next step, both DHS and DHSCH were tested for metal-based Fenton chemistry in vitro using HPLC with coulometric detection. Neither of these compounds were able to block the iron-based Fenton reaction and, in addition, they mostly intensified hydroxyl radical production. In the copper-based Fenton reaction, the effect of DHSCH was again prooxidant or neutral, while the effect of DHS was profoundly condition-dependent. DHS was even able to attenuate the reaction under some conditions. Interestingly, both compounds were strongly protective against the copper-triggered lysis of red blood cells, with DHSCH being more potent. The results from this study indicated that, notwithstanding the prooxidative effects of both dehydroflavonolignans, their in vivo effect could be protective.
- Keywords
- copper, dehydroflavonolignans, dehydrosilybin, dehydrosilychristin, flavonolignans, hydroxyl radical, iron, milk thistle, prooxidation, silymarin,
- Publication type
- Journal Article MeSH
Natural phenolic compounds are known to be metabolized by phase II metabolic reactions. In this study, we examined the in vitro sulfation of the main constituents of silymarin, an herbal remedy produced from the fruits of the milk thistle. The study focused on major flavonolignan constituents, including silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin, as well as the flavonoid taxifolin. Using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS), individual flavonolignans and taxifolin were found to be sulfated by human liver and human intestinal cytosols. Moreover, experiments with recombinant enzymes revealed that human sulfotransferases (SULTs) 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C4, and 1E1 catalyzed the sulfation of all of the tested compounds, with the exception of silydianin, which was not sulfated by SULT1B1 and SULT1C4. The sulfation products detected were monosulfates, of which some of the major ones were identified as silybin A 20-O-sulfate, silybin B 20-O-sulfate, and isosilybin A 20-O-sulfate. Further, we also observed the sulfation of the tested compounds when they were tested in the silymarin mixture. Sulfates of flavonolignans and of taxifolin were produced by incubating silymarin with all of the above SULT enzymes, with human liver and intestinal cytosols, and also with human hepatocytes, even though the spectrum and amount of the sulfates varied among the metabolic models. Considering our results and the expression patterns of human sulfotransferases in metabolic tissues, we conclude that flavonolignans and taxifolin can potentially undergo both intestinal and hepatic sulfation, and that SULTs 1A1, 1A3, 1B1, and 1E1 could be involved in the biotransformation of the constituents of silymarin.
- Keywords
- dihydroquercetin, isosilybin, metabolism, silybin, silychristin, silydianin, sulfation,
- Publication type
- Journal Article MeSH
Silymarin is a traditional drug and food supplement employed for numerous liver disorders. The available studies indicate that its activities may be broader, in particular due to claimed benefits in some cardiovascular diseases, but the contributions of individual silymarin components are unclear. Therefore, we tested silymarin flavonolignans as pure diastereomers as well as their sulfated metabolites for potential vasorelaxant and antiplatelet effects in isolated rat aorta and in human blood, respectively. Eleven compounds from a panel of 17 tested exhibited a vasorelaxant effect, with half maximal effective concentrations (EC50) ranging from 20 to 100 µM, and some substances retained certain activity even in the range of hundreds of nM. Stereomers A were generally more potent as vasorelaxants than stereomers B. Interestingly, the most active compound was a metabolite-silychristin-19-O-sulfate. Although initial experiments showed that silybin, 2,3-dehydrosilybin, and 2,3-dehydrosilychristin were able to substantially block platelet aggregation, their effects were rapidly abolished with decreasing concentration, and were negligible at concentrations ≤100 µM. In conclusion, metabolites of silymarin flavonolignans seem to have biologically relevant vasodilatory properties, but the effect of silymarin components on platelets is low or negligible.
- Keywords
- Silybum marianum, aorta, blood coagulation, metabolites, milk thistle, sulfates, thrombocytes, vasorelaxant,
- MeSH
- Platelet Aggregation drug effects MeSH
- Aorta drug effects MeSH
- Flavonolignans chemistry pharmacology MeSH
- Platelet Aggregation Inhibitors chemistry pharmacology MeSH
- Rats MeSH
- Humans MeSH
- Molecular Structure MeSH
- Vasodilator Agents MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Flavonolignans MeSH
- Platelet Aggregation Inhibitors MeSH
- Vasodilator Agents MeSH
Silychristin A is the second most abundant compound of silymarin. Silymarin complex was previously described as an antioxidant with multidrug resistance modulation activity. Here, the results of a classical biochemical antioxidant assay (ORAC) were compared with a cellular assay evaluating the antioxidant capacity of pure silychristin A and its derivatives (anhydrosilychristin, isosilychristin and 2,3-dehydrosilychristin A). All the tested compounds acted as antioxidants within the cells, but 2,3-dehydro- and anhydro derivatives were almost twice as potent as the other tested compounds. Similar results were obtained in LPS-stimulated macrophages, where 2,3-dehydro- and anhydrosilychristin inhibited NO production nearly twice as efficiently as silychristin A. The inhibition of P-glycoprotein (P-gp) was determined in vitro, and the respective sensitization of doxorubicin-resistant ovarian carcinoma overproducing P-gp was detected. Despite the fact that the inhibition of P-gp was demonstrated in a concentration-dependent manner for each tested compound, the sensitization of the resistant cell line was observed predominantly for silychristin A and 2,3-dehydrosilychristin A. However, anhydrosilychristin and isosilychristin affected the expression of both the P-gp (ABCB1) and ABCG2 genes. This is the first report showing that silychristin A and its 2,3-dehydro-derivative modulate multidrug resistance by the direct inhibition of P-gp, in contrast to anhydrosilychristin and isosilychristin modulating multidrug resistance by downregulating the expression of the dominant transmembrane efflux pumps.
- Keywords
- ABC superfamily, Adriamycin, BCRP, P-glycoprotein, expression profile, immunomodulation, silychristin, silymarin,
- Publication type
- Journal Article MeSH