Nejvíce citovaný článek - PubMed ID 30459217
Human Stress-inducible Hsp70 Has a High Propensity to Form ATP-dependent Antiparallel Dimers That Are Differentially Regulated by Cochaperone Binding
Retinoic acid receptors (RARs) are ligand-dependent transcription factors essential for various biological processes, including embryogenesis, differentiation, and apoptosis. RARs function as heterodimers with retinoid X receptors (RXRs) and regulate gene expression via retinoic acid response elements (RAREs). Their transcriptional activity is modulated by coregulators, with corepressors maintaining repression in the absence of ligand and coactivators enabling transcription upon ligand binding. Structural studies reveal that DNA binding induces conformational changes affecting coregulator interactions. However, the precise structural organization of RAR/RXR-coregulator complexes and the allosteric influence of DNA on receptor function remain incompletely understood. Our study presents an integrative analysis of the RAR/RXR heterodimer bound to four distinct and relevant RAREs (DR0, DR1, DR5, and IR0) in complex with either a corepressor (NCoR) or a coactivator (TIF-2) nuclear receptor interaction domain. By combining small-angle X-ray scattering, hydrogen/deuterium exchange mass spectrometry, and molecular dynamics simulations, we revealed that the heterodimer adopts distinct conformations depending on the DNA sequence, influencing interdomain distances and receptor interactions. Additionally, we uncovered the dynamic interplay between ligand, DNA, and coregulator binding. This study provides new insights into the structural features of coregulator proteins and highlights the allosteric influence of RAREs on receptor function.
- MeSH
- DNA * chemie metabolismus MeSH
- koaktivátor 2 jaderných receptorů chemie metabolismus genetika MeSH
- korepresor 1 jaderného receptoru chemie metabolismus genetika MeSH
- korepresor 2 jaderného receptoru chemie metabolismus genetika MeSH
- lidé MeSH
- ligandy MeSH
- maloúhlový rozptyl MeSH
- receptory kyseliny retinové * chemie metabolismus genetika MeSH
- responzivní elementy MeSH
- retinoidní X receptory * chemie metabolismus genetika MeSH
- simulace molekulární dynamiky MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
- koaktivátor 2 jaderných receptorů MeSH
- korepresor 1 jaderného receptoru MeSH
- korepresor 2 jaderného receptoru MeSH
- ligandy MeSH
- NCOA2 protein, human MeSH Prohlížeč
- NCOR2 protein, human MeSH Prohlížeč
- receptory kyseliny retinové * MeSH
- retinoidní X receptory * MeSH
Nedd4-2 E3 ligase regulates Na+ homeostasis by ubiquitinating various channels and membrane transporters, including the epithelial sodium channel ENaC. In turn, Nedd4-2 dysregulation leads to various conditions, including electrolytic imbalance, respiratory distress, hypertension, and kidney diseases. However, Nedd4-2 regulation remains mostly unclear. The present study aims at elucidating Nedd4-2 regulation by structurally characterizing Nedd4-2 and its complexes using several biophysical techniques. Our cryo-EM reconstruction shows that the C2 domain blocks the E2-binding surface of the HECT domain. This blockage, ubiquitin-binding exosite masking by the WW1 domain, catalytic C922 blockage and HECT domain stabilization provide the structural basis for Nedd4-2 autoinhibition. Furthermore, Ca2+-dependent C2 membrane binding disrupts C2/HECT interactions, but not Ca2+ alone, whereas 14-3-3 protein binds to a flexible region of Nedd4-2 containing the WW2 and WW3 domains, thereby inhibiting its catalytic activity and membrane binding. Overall, our data provide key mechanistic insights into Nedd4-2 regulation toward fostering the development of strategies targeting Nedd4-2 function.
- MeSH
- elektronová kryomikroskopie MeSH
- HEK293 buňky MeSH
- lidé MeSH
- molekulární modely MeSH
- proteinové domény MeSH
- proteiny 14-3-3 * metabolismus chemie MeSH
- ubikvitinace MeSH
- ubikvitinligasy Nedd4 * metabolismus chemie genetika ultrastruktura MeSH
- vápník * metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Nedd4 protein, human MeSH Prohlížeč
- Nedd4L protein, human MeSH Prohlížeč
- proteiny 14-3-3 * MeSH
- ubikvitinligasy Nedd4 * MeSH
- vápník * MeSH
The ubiquitous CLC membrane transporters are unique in their ability to exchange anions for cations. Despite extensive study, there is no mechanistic model that fully explains their 2:1 Cl‒/H+ stoichiometric exchange mechanism. Here, we provide such a model. Using differential hydrogen-deuterium exchange mass spectrometry, cryo-EM structure determination, and molecular dynamics simulations, we uncovered new conformational dynamics in CLC-ec1, a bacterial CLC homolog that has served as a paradigm for this family of transporters. Simulations based on a cryo-EM structure at pH 3 revealed critical steps in the transport mechanism, including release of Cl‒ ions to the extracellular side, opening of the inner gate, and novel water wires that facilitate H+ transport. Surprisingly, these water wires occurred independently of Cl‒ binding, prompting us to reassess the relationship between Cl‒ binding and Cl‒/H+ coupling. Using isothermal titration calorimetry and quantitative flux assays on mutants with reduced Cl‒ binding affinity, we conclude that, while Cl‒ binding is necessary for coupling, even weak binding can support Cl‒/H+ coupling. By integrating our findings with existing literature, we establish a complete and efficient CLC 2:1 Cl‒/H+ exchange mechanism.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
In proteomics, postproline cleaving enzymes (PPCEs), such as Aspergillus niger prolyl endopeptidase (AnPEP) and neprosin, complement proteolytic tools because proline is a stop site for many proteases. But while aiming at using AnPEP in online proteolysis, we found that this enzyme also displayed specificity to reduced cysteine. By LC-MS/MS, we systematically analyzed AnPEP sources and conditions that could affect this cleavage preference. Postcysteine cleavage was blocked by cysteine modifications, including disulfide bond formation, oxidation, and alkylation. The last modification explains why this activity has remained undetected so far. In the same experimental paradigm, neprosin mimicked this cleavage specificity. Based on these findings, PPCEs cleavage preferences should be redefined from post-Pro/Ala to post-Pro/Ala/Cys. Moreover, this evidence demands reconsidering PPCEs applications, whether cleaving Cys-rich proteins or assessing Cys status in proteins, and calls for revisiting the proposed enzymatic mechanism of these proteases.
- Publikační typ
- časopisecké články MeSH
MICAL proteins play a crucial role in cellular dynamics by binding and disassembling actin filaments, impacting processes like axon guidance, cytokinesis, and cell morphology. Their cellular activity is tightly controlled, as dysregulation can lead to detrimental effects on cellular morphology. Although previous studies have suggested that MICALs are autoinhibited, and require Rab proteins to become active, the detailed molecular mechanisms remained unclear. Here, we report the cryo-EM structure of human MICAL1 at a nominal resolution of 3.1 Å. Structural analyses, alongside biochemical and functional studies, show that MICAL1 autoinhibition is mediated by an intramolecular interaction between its N-terminal catalytic and C-terminal coiled-coil domains, blocking F-actin interaction. Moreover, we demonstrate that allosteric changes in the coiled-coil domain and the binding of the tripartite assembly of CH-L2α1-LIM domains to the coiled-coil domain are crucial for MICAL activation and autoinhibition. These mechanisms appear to be evolutionarily conserved, suggesting a potential universality across the MICAL family.
- MeSH
- aktiny metabolismus chemie MeSH
- alosterická regulace MeSH
- calponiny MeSH
- elektronová kryomikroskopie * MeSH
- lidé MeSH
- mikrofilamenta metabolismus ultrastruktura MeSH
- mikrofilamentové proteiny metabolismus chemie ultrastruktura MeSH
- molekulární modely MeSH
- oxygenasy se smíšenou funkcí MeSH
- proteinové domény MeSH
- proteiny s doménou LIM metabolismus chemie genetika MeSH
- vazba proteinů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- calponiny MeSH
- MICAL1 protein, human MeSH Prohlížeč
- mikrofilamentové proteiny MeSH
- oxygenasy se smíšenou funkcí MeSH
- proteiny s doménou LIM MeSH
Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.
- MeSH
- alkylace MeSH
- footprinting proteinů metody MeSH
- halogenace MeSH
- imunokomplex chemie MeSH
- lidé MeSH
- mapování epitopu * metody MeSH
- monoklonální protilátky chemie imunologie MeSH
- receptor erbB-2 * chemie imunologie MeSH
- trastuzumab * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cytosolic Ca2+ and Na+ allosterically regulate Na+/Ca2+ exchanger (NCX) proteins to vary the NCX-mediated Ca2+ entry/exit rates in diverse cell types. To resolve the structure-based dynamic mechanisms underlying the ion-dependent allosteric regulation in mammalian NCXs, we analyze the apo, Ca2+, and Na+-bound species of the brain NCX1.4 variant using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulations. Ca2+ binding to the cytosolic regulatory domains (CBD1 and CBD2) rigidifies the intracellular regulatory loop (5L6) and promotes its interaction with the membrane domains. Either Na+ or Ca2+ stabilizes the intracellular portions of transmembrane helices TM3, TM4, TM9, TM10, and their connecting loops (3L4 and 9L10), thereby exposing previously unappreciated regulatory sites. Ca2+ or Na+ also rigidifies the palmitoylation domain (TMH2), and neighboring TM1/TM6 bundle, thereby uncovering a structural entity for modulating the ion transport rates. The present analysis provides new structure-dynamic clues underlying the regulatory diversity among tissue-specific NCX variants.
- MeSH
- pumpa pro výměnu sodíku a vápníku * chemie MeSH
- savci * MeSH
- sekundární struktura proteinů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- pumpa pro výměnu sodíku a vápníku * MeSH
Chloride Intracellular Channel (CLIC) family members uniquely transition between soluble and membrane-associated conformations. Despite decades of extensive functional and structural studies, CLICs' function as ion channels remains debated, rendering our understanding of their physiological role incomplete. Here, we expose the function of CLIC5 as a fusogen. We demonstrate that purified CLIC5 directly interacts with the membrane and induces fusion, as reflected by increased liposomal diameter and lipid and content mixing between liposomes. Moreover, we show that this activity is facilitated by acidic pH, a known trigger for CLICs' transition to a membrane-associated conformation, and that increased exposure of the hydrophobic inter-domain interface is crucial for this process. Finally, mutation of a conserved hydrophobic interfacial residue diminishes the fusogenic activity of CLIC5 in vitro and impairs excretory canal extension in C. elegans in vivo. Together, our results unravel the long-sought physiological role of these enigmatic proteins.
- MeSH
- Caenorhabditis elegans * genetika metabolismus MeSH
- chloridové kanály metabolismus MeSH
- chloridy * metabolismus MeSH
- liposomy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chloridové kanály MeSH
- chloridy * MeSH
- liposomy MeSH
The acylated Repeats in ToXins (RTX) leukotoxins, the adenylate cyclase toxin (CyaA) or α-hemolysin (HlyA), bind β2 integrins of leukocytes but also penetrate cells lacking these receptors. We show that the indoles of conserved tryptophans in the acylated segments, W876 of CyaA and W579 of HlyA, are crucial for β2 integrin-independent membrane penetration. Substitutions of W876 by aliphatic or aromatic residues did not affect acylation, folding, or the activities of CyaA W876L/F/Y variants on cells expressing high amounts of the β2 integrin CR3. However, toxin activity of CyaA W876L/F/Y on cells lacking CR3 was strongly impaired. Similarly, a W579L substitution selectively reduced HlyA W579L cytotoxicity towards cells lacking β2 integrins. Intriguingly, the W876L/F/Y substitutions increased the thermal stability (Tm) of CyaA by 4 to 8 °C but locally enhanced the accessibility to deuteration of the hydrophobic segment and of the interface of the two acylated loops. W876Q substitution (showing no increase in Tm), or combination of W876F with a cavity-filling V822M substitution (this combination decreasing the Tm closer to that of CyaA), yielded a milder defect of toxin activity on erythrocytes lacking CR3. Furthermore, the activity of CyaA on erythrocytes was also selectively impaired when the interaction of the pyrrolidine of P848 with the indole of W876 was ablated. Hence, the bulky indoles of residues W876 of CyaA, or W579 of HlyA, rule the local positioning of the acylated loops and enable a membrane-penetrating conformation in the absence of RTX toxin docking onto the cell membrane by β2 integrins.
- Klíčová slova
- RTX toxin, acylated segment, adenylate cyclase toxin, cytotoxicity, hydrogen/deuterium exchange, thermal stability, tryptophan residue, α-hemolysin, β(2) integrins,
- MeSH
- adenylátcyklasový toxin * chemie genetika metabolismus MeSH
- antigeny CD18 * genetika metabolismus MeSH
- Bordetella pertussis MeSH
- buněčná membrána metabolismus MeSH
- erytrocyty metabolismus MeSH
- konzervovaná sekvence MeSH
- tryptofan * chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátcyklasový toxin * MeSH
- antigeny CD18 * MeSH
- tryptofan * MeSH
The conserved Tweety homolog (TTYH) family consists of three paralogs in vertebrates, displaying a ubiquitous expression pattern. Although considered as ion channels for almost two decades, recent structural and functional analyses refuted this role. Intriguingly, while all paralogs shared a dimeric stoichiometry following detergent solubilization, their structures revealed divergence in their relative subunit orientation. Here, we determined the stoichiometry of intact mouse TTYH (mTTYH) complexes in cells. Using cross-linking and single-molecule fluorescence microscopy, we demonstrate that mTTYH1 and mTTYH3 form tetramers at the plasma membrane, stabilized by interactions between their extracellular domains. Using blue-native PAGE, fluorescence-detection size-exclusion chromatography, and hydrogen/deuterium exchange mass spectrometry (HDX-MS), we reveal that detergent solubilization results in tetramers destabilization, leading to their dissolution into dimers. Moreover, HDX-MS demonstrates that the extracellular domains are stabilized in the context of the tetrameric mTTYH complex. Together, our results expose the innate tetrameric organization of TTYH complexes at the cell membrane. Future structural analyses of these assemblies in native membranes are required to illuminate their long-sought cellular function.
- MeSH
- buněčná membrána MeSH
- detergenty * MeSH
- myši MeSH
- vodík/deuteriová výměna a hmotnostní spektrometrie * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- detergenty * MeSH