Nejvíce citovaný článek - PubMed ID 32206082
Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping
The increase in extreme climate events associated with global warming is a great menace to crop productivity nowadays. In addition to abiotic stresses, warmer conditions favor the spread of infectious diseases affecting plant performance. Within this context, beneficial microbes constitute a sustainable alternative for the mitigation of the effects of climate change on plant growth and productivity. Used as biostimulants to improve plant growth, they also increase plant resistance to abiotic and biotic stresses through the generation of a primed status in the plant, leading to a better and faster response to stress. In this review, we have focused on the importance of a balanced redox status for the adequate performance of the plant and revisited the different antioxidant mechanisms supporting the biocontrol effect of beneficial microbes through the adjustment of the levels of reactive oxygen species (ROS). In addition, the different tools for the analysis of antioxidant responses and redox regulation have been evaluated. The importance of redox regulation in the activation of the immune responses through different mechanisms, such as transcriptional regulation, retrograde signaling, and post-translational modification of proteins, emerges as an important research goal for understanding the biocontrol activity of the beneficial microbes.
- Klíčová slova
- antioxidant responses, beneficial microbe, biocontrol, biopriming, biotic stress, disease defense, redox regulation, sustainable agriculture, symbiosis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Rhizospheric melatonin application has a positive effect on the tolerance of plants to low temperature; however, it remains unknown whether the rhizosphere microorganisms are involved in this process. The aim of this study was to investigate the effect of exogenous melatonin on the diversity and functioning of fungi and bacteria in rhizosphere of barley under low temperature. The results showed that rhizospheric melatonin application positively regulated the photosynthetic carbon assimilation and redox homeostasis in barley in response to low temperature. These effects might be associated with an altered diversity of microbial community in rhizosphere, especially the species and relative abundance of nitrogen cycling related microorganisms, as exemplified by the changes in rhizosphere metabolites in the pathways of amino acid synthesis and metabolism. Collectively, it was suggested that the altered rhizospheric microbial status upon melatonin application was associated with the response of barley to low temperature. This suggested that the melatonin induced microbial changes should be considered for its application in the crop cold-resistant cultivation.
- Klíčová slova
- Hordeum vulgare, low temperature, melatonin, microbial diversity, nitrogen cycling,
- Publikační typ
- časopisecké články MeSH
The five Nordic countries span the most northern region for field cultivation in the world. This presents challenges per se, with short growing seasons, long days, and a need for frost tolerance. Climate change has additionally increased risks for micro-droughts and water logging, as well as pathogens and pests expanding northwards. Thus, Nordic agriculture demands crops that are adapted to the specific Nordic growth conditions and future climate scenarios. A focus on crop varieties and traits important to Nordic agriculture, including the unique resource of nutritious wild crops, can meet these needs. In fact, with a future longer growing season due to climate change, the region could contribute proportionally more to global agricultural production. This also applies to other northern regions, including the Arctic. To address current growth conditions, mitigate impacts of climate change, and meet market demands, the adaptive capacity of crops that both perform well in northern latitudes and are more climate resilient has to be increased, and better crop management systems need to be built. This requires functional phenomics approaches that integrate versatile high-throughput phenotyping, physiology, and bioinformatics. This review stresses key target traits, the opportunities of latitudinal studies, and infrastructure needs for phenotyping to support Nordic agriculture.
- Klíčová slova
- Arctic, Nordic agriculture, climate change, crop phenotyping, functional phenomics, wild crops,
- MeSH
- fenomika * MeSH
- klimatické změny MeSH
- roční období MeSH
- zemědělské plodiny genetika MeSH
- zemědělství * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Interannual and local fluctuations in wheat crop yield are mostly explained by abiotic constraints. Heatwaves and drought, which are among the top stressors, commonly co-occur, and their frequency is increasing with global climate change. High-throughput methods were optimized to phenotype wheat plants under controlled water deficit and high temperature, with the aim to identify phenotypic traits conferring adaptative stress responses. Wheat plants of 10 genotypes were grown in a fully automated plant facility under 25/18 °C day/night for 30 d, and then the temperature was increased for 7 d (38/31 °C day/night) while maintaining half of the plants well irrigated and half at 30% field capacity. Thermal and multispectral images and pot weights were registered twice daily. At the end of the experiment, key metabolites and enzyme activities from carbohydrate and antioxidant metabolism were quantified. Regression machine learning models were successfully established to predict plant biomass using image-extracted parameters. Evapotranspiration traits expressed significant genotype-environment interactions (G×E) when acclimatization to stress was continuously monitored. Consequently, transpiration efficiency was essential to maintain the balance between water-saving strategies and biomass production in wheat under water deficit and high temperature. Stress tolerance included changes in carbohydrate metabolism, particularly in the sucrolytic and glycolytic pathways, and in antioxidant metabolism. The observed genetic differences in sensitivity to high temperature and water deficit can be exploited in breeding programmes to improve wheat resilience to climate change.
- Klíčová slova
- Triticum aestivum, Carbohydrate metabolism, climate change, drought resilience, food security, high temperature, high-throughput plant phenotyping, multispectral imaging, water deficit, wheat,
- MeSH
- antioxidancia metabolismus MeSH
- fenotyp MeSH
- fyziologický stres MeSH
- období sucha * MeSH
- pšenice * fyziologie MeSH
- šlechtění rostlin MeSH
- teplota MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- voda MeSH
Abies nordmanniana is used for Christmas tree production but poor seed germination and slow growth represent challenges for the growers. We addressed the plant growth promoting potential of root-associated bacteria isolated from A. nordmanniana. Laboratory screenings of a bacterial strain collection yielded several Bacillus and Paenibacillus strains that improved seed germination and produced indole-3-acetic acid. The impact of three of these strains on seed germination, plant growth and growth-related physiological parameters was then determined in greenhouse and field trials after seed inoculation, and their persistence was assessed by 16S rRNA gene-targeted bacterial community analysis. Two strains showed distinct and significant effects. Bacillus sp. s50 enhanced seed germination in the greenhouse but did not promote shoot or root growth. In accordance, this strain did not increase the level of soluble hexoses needed for plant growth but increased the level of storage carbohydrates. Moreover, strain s50 increased glutathione reductase and glutathione-S-transferase activities in the plant, which may indicate induction of systemic resistance during the early phase of plant development, as the strain showed poor persistence in the root samples (rhizosphere soil plus root tissue). Paenibacillus sp. s37 increased plant root growth, especially by inducing secondary root formation, under in greenhouse conditions, where it showed high persistence in the root samples. Under these conditions, it further it increased the level of soluble carbohydrates in shoots, and the levels of starch and non-structural carbohydrates in roots, stem and shoots. Moreover, it increased the chlorophyll level in the field trial. These findings indicate that this strain improves plant growth and vigor through effects on photosynthesis and plant carbohydrate reservoirs. The current results show that the two strains s37 and s50 could be considered for growth promotion programs of A. nordmanniana in greenhouse nurseries, and even under field conditions.
- Klíčová slova
- Bacillus, PGPR, Paenibacillus, antioxidative enzymes, phytohormones, plant carbohydrates, rhizosphere,
- Publikační typ
- časopisecké články MeSH
Despite the agronomic importance of sugar beet (Beta vulgaris L.), the early-stage development of its taproot has only been poorly investigated. Thus, the mechanisms that determine growth and sugar accumulation in sugar beet are largely unknown. In the presented study, a physiological characterization of early-stage sugar beet taproot development was conducted. Activities were analyzed for fourteen key enzymes of carbohydrate metabolism in developing taproots over the first 80 days after sowing. In addition, we performed in situ localizations of selected carbohydrate-metabolic enzyme activities, anatomical investigations, and quantifications of soluble carbohydrates, hexose phosphates, and phytohormones. Based on the accumulation dynamics of biomass and sucrose, as well as on anatomical parameters, the early phase of taproot development could be subdivided into three stages-prestorage, transition, secondary growth and sucrose accumulation stage-each of which was characterized by distinct metabolic and phytohormonal signatures. The enzyme activity signatures corresponding to these stages were also shown to be robustly reproducible in experiments conducted in two additional locations. The results from this physiological phenotyping approach contribute to the identification of the key regulators of sugar beet taproot development and open up new perspectives for sugar beet crop improvement concerning both physiological marker-based breeding and biotechnological approaches.
- Klíčová slova
- assimilate partitioning, carbohydrate metabolism, developmental regulation, physiological phenotyping, sucrose accumulation, taproot development,
- Publikační typ
- časopisecké články MeSH
One of the major challenges in agriculture is to ensure sufficient and healthy food availability for the increasing world population in near future. This requires maintaining sustainable cultivation of crop plants under varying environmental stresses. Among these stresses, salinity is the second most abundant threat worldwide after drought. One of the promising strategies to mitigate salinity stress is to cultivate halotolerant crops such as quinoa. Under high salinity, performance can be improved by plant growth promoting bacteria (PGPB). Among PGPB, endophytic bacteria are considered better in stimulating plant growth compared to rhizosphere bacteria because of their ability to colonize both in plant rhizosphere and plant interior. Therefore, in the current study, a pot experiment was conducted in a controlled greenhouse to investigate the effects of endophytic bacteria i.e., Burkholderia phytofirmans PsJN on improving growth, physiology and yield of quinoa under salinity stress. At six leaves stage, plants were irrigated with saline water having either 0 (control) or 400 mM NaCl. The results indicated that plants inoculated with PsJN mitigated the negative effects of salinity on quinoa resulting in increased shoot biomass, grain weight and grain yield by 12%, 18% and 41% respectively, over un-inoculated control. Moreover, inoculation with PsJN improved osmotic adjustment and ion homeostasis ability. In addition, leaves were also characterized for five key reactive oxygen species (ROS) scavenging enzyme in response to PsJN treatment. This showed higher activity of catalase (CAT) and dehydroascobate reductase (DHAR) in PsJN-treated plants. These findings suggest that inoculation of quinoa seeds with Burkholderia phytofirmans PsJN could be used for stimulating growth and yield of quinoa in highly salt-affected soils.
- Klíčová slova
- Endophytic bacteria, Plant growth promoting bacteria (PGPB),
- Publikační typ
- časopisecké články MeSH
Increasing agricultural losses due to biotic and abiotic stresses caused by climate change challenge food security worldwide. A promising strategy to sustain crop productivity under conditions of limited water availability is the use of plant growth promoting rhizobacteria (PGPR). Here, the effects of spore forming Bacillus licheniformis (FMCH001) on growth and physiology of maize (Zea mays L. cv. Ronaldinho) under well-watered and drought stressed conditions were investigated. Pot experiments were conducted in the automated high-throughput phenotyping platform PhenoLab and under greenhouse conditions. Results of the PhenoLab experiments showed that plants inoculated with B. licheniformis FMCH001 exhibited increased root dry weight (DW) and plant water use efficiency (WUE) compared to uninoculated plants. In greenhouse experiments, root and shoot DW significantly increased by more than 15% in inoculated plants compared to uninoculated control plants. Also, the WUE increased in FMCH001 plants up to 46% in both well-watered and drought stressed plants. Root and shoot activities of 11 carbohydrate and eight antioxidative enzymes were characterized in response to FMCH001 treatments. This showed a higher antioxidant activity of catalase (CAT) in roots of FMCH001 treated plants compared to uninoculated plants. The higher CAT activity was observed irrespective of the water regime. These findings show that seed coating with Gram positive spore forming B. licheniformis could be used as biostimulants for enhancing plant WUE under both normal and drought stress conditions.
- Klíčová slova
- antioxidants, biostimulants, plant growth promoting rhizobacteria, plant probiotics, water use efficiency,
- Publikační typ
- časopisecké články MeSH