Most cited article - PubMed ID 33086633
Phosphorus Nutrient Management through Synchronization of Application Methods and Rates in Wheat and Maize Crops
As macronutrients, management of nitrogen (N) and sulfur (S) is prime in importance when wheat is cultivated. Both have a significant impact on the improvement of growth and yield attributes. In addition, S and N also play an imperative role in the enhancement of seed protein contents. However, the need of the time is the selection of their optimum application rate for the achievement of maximum wheat productivity. That is why the current study was planned to examine the impact of variable application rates of S and N on wheat. There are 12 treatments, i.e., control (no nitrogen (0N) + no sulfur (0S)), 40 kg/ha N (40N + 0S), 80 kg/ha N (80N + 0S), 120 kg/ha N (120N + 0S), 30 kg/ha sulfur (30S), 40N + 30S, 80N + 30S, 120N + 30S, 60 kg/ha sulfur (60S), 40N + 60S, 80N + 60S, and 120N + 60S, applied in three replications. The results showed that plant height, grains/spike, spike/m2, and 1000 grain weight were significantly improved by the addition of 120N + 60S. A significant enhancement of grain N contents, N uptake, and protein contents of wheat validated the efficient role of 120N + 60S over 0N and 0S. In conclusion, 120N + 60S is a better treatment for the achievement of maximum wheat yield. More investigations under variable soil textures and climatic conditions are suggested under different climates to declare 120N + 60S as the best amendment for wheat growth and yield improvement.
- Publication type
- Journal Article MeSH
Heavy metal stress is one of the major abiotic stresses that cause environmental pollution in recent decades. An elevated concentration of these heavy metals is highly toxic to plant. Chromium (Cr) is one of the heavy metals whose concentration in the environment is still increasing alarmingly. It is harmful for plant growth and achene yield. To check out the growth and protein alternation towards pollutants, two sunflower varieties (RA-713 and AHO-33) were subjected to different chromium concentrations (control, 200 ppm, 400 ppm) by soil application. This study has elaborated that 400 ppm Cr resulted in a reduction of various growth parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was used to enhance the understanding of plant proteomic modulation under Cr stress. Different protein bands like 48 and 49, 26 kDa have newly appeared, and three 60, 47, and 42 kDa, and two protein bands 49 and 13 kDa were up-regulated in seeds of RA-713 and AHO-33, respectively. Some proteins (52, 16 kDa) are down-regulated in leaf tissues of both varieties. Only 6 and 81 kDa protein showed up-regulation and 154 kDa down-regulation behavior in the shoot in response to stress. The finding s of study might support the selection of tolerant genotype under Cr contamination and the discovery of new protein biomarkers that can use as monitoring tools in heavy metal stress biology.
- Keywords
- Chromium, Heavy metal, Helianthus annuus, Physiological alterations, Proteomics,
- Publication type
- Journal Article MeSH
Phosphorus (P) is an important nutrient in plant nutrition. Its absorption by plants from the soil is influenced by many factors. Therefore, a foliar application of this nutrient could be utilized for the optimal nutrition state of plants. The premise of the study is that foliar application of phosphorus will increase the yield of normal-phytate (npa) cultivars (CDC Bronco a Cutlass) and low-phytate (lpa) lines (1-2347-144, 1-150-81) grown in soils with low phosphorus supply and affect seed quality depending on the ability of the pea to produce phytate. A graded application of phosphorus (H₃PO₄) in four doses: without P (P0), 27.3 mg P (P1), 54.5 mg P (P2), and 81.8 mg P/pot (P3) realized at the development stages of the 6th true leaf led to a significant increase of chlorophyll contents, and fluorescence parameters of chlorophyll expressing the CO2 assimilation velocity. The P fertilization increased the yield of seeds significantly, except the highest dose of phosphorus (P3) at which the yield of the npa cultivars was reduced. The line 1-2347-144 was the most sensible to the P application when the dose P3 increased the seed production by 42.1%. Only the lpa line 1-150-81 showed a decreased tendency in the phytate content at the stepped application of the P nutrition. Foliar application of phosphorus significantly increased ash material in seed, but did not tend to affect the protein and mineral content of seeds. Only the zinc content in seeds was significantly reduced by foliar application of P in npa and lpa pea genotypes. It is concluded from the present study that foliar phosphorus application could be an effective way to enhance the pea growth in P-deficient condition with a direct effect on seed yield and quality.
- Keywords
- chlorophyll content, fluorescence parameters, foliar application, pea, seed nutrient content, seed quality, seed yield,
- Publication type
- Journal Article MeSH
Conventional agricultural practices and rising energy crisis create a question about the sustainability of the present-day food production system. Nutrient exhaustive crops can have a severe impact on native soil fertility by causing nutrient mining. In this backdrop, we conducted a comprehensive assessment of bio-priming intervention in red cabbage production considering nutrient uptake, the annual change in soil fertility, nutrient use efficiency, energy budgeting, and economic benefits for its sustainable intensification, among resource-poor farmers of Middle Gangetic Plains. The compatible microbial agents used in the study include Trichoderma harzianum, Pseudomonas fluorescens, and Bacillus subtilis. Field assays (2016-2017 and 2017-2018) of the present study revealed supplementing 75% of recommended NPK fertilizer with dual inoculation of T. harzianum and P. fluorescens increased macronutrient uptake (N, P, and K), root length, heading percentage, head diameter, head weight, and the total weight of red cabbage along with a positive annual change in soil organic carbon. Maximum positive annual change in available N and available P was recorded under 75% RDF + P. fluorescens + B. subtilis and 75% RDF + T. harzianum + B. subtilis, respectively. Bio-primed plants were also higher in terms of growth and nutrient use efficiency (agronomic efficiency, physiological efficiency, apparent recovery efficiency, partial factor productivity). Energy output (26,370 and 26,630 MJ ha-1), energy balance (13,643 and 13,903 MJ ha-1), maximum gross return (US $ 16,030 and 13,877 ha-1), and net return (US $ 15,966 and 13,813 ha-1) were considerably higher in T. harzianum, and P. fluorescens treated plants. The results suggest the significance of the bio-priming approach under existing integrated nutrient management strategies and the role of dual inoculations in producing synergistic effects on plant growth and maintaining the soil, food, and energy nexus.
- MeSH
- Brassica physiology MeSH
- Nitrogen chemistry metabolism MeSH
- Energy Metabolism MeSH
- Fertilization * MeSH
- Plant Physiological Phenomena * MeSH
- Microbiota * MeSH
- Minerals * MeSH
- Crop Production MeSH
- Fertilizers MeSH
- Soil chemistry MeSH
- Rhizosphere * MeSH
- Carbon chemistry MeSH
- Plant Development * MeSH
- Nutrients * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Nitrogen MeSH
- Minerals * MeSH
- Fertilizers MeSH
- Soil MeSH
- Carbon MeSH
High lead (Pb) concentration in soils is becoming a severe threat to human health. It also deteriorates plants, growth, yield and quality of food. Although the use of plant growth-promoting rhizobacteria (PGPR), biochar and compost can be effective environment-friendly amendments for decreasing Pb stress in crop plants, the impacts of their simultaneous co-application has not been well documented. Thus current study was carried, was conducted to investigate the role of rhizobacteria and compost mixed biochar (CB) under Pb stress on selected soil properties and agronomic parameters in mint (Mentha piperita L.) plants. To this end, six treatments were studied: Alcaligenes faecalis, Bacillus amyloliquefaciens, CB, PGPR1 + CB, PGPR2 + CB and control. Results showed that the application A. faecalis + CB significantly decreased soil pH and EC over control. However, OM, nitrogen, phosphorus and potassium concentration were significantly improved in the soil where A. faecalis + CB was applied over control. The A. faecalis + CB treatment significantly improved mint plant root dry weight (58%), leaves dry weight (32%), chlorophyll (37%), and N (46%), P (39%) and K (63%) leave concentration, while also decreasing the leaves Pb uptake by 13.5% when compared to the unamended control. In conclusion, A. faecalis + CB has a greater potential to improve overall soil quality, fertility and mint plant productivity under high Pb soil concentration compared to the sole application of CB and A. faecalis.
- MeSH
- Alcaligenes faecalis enzymology metabolism MeSH
- Aminohydrolases metabolism MeSH
- Bacillus amyloliquefaciens enzymology metabolism MeSH
- Bacterial Proteins metabolism MeSH
- Biodegradation, Environmental MeSH
- Charcoal metabolism MeSH
- Stress, Physiological MeSH
- Composting methods MeSH
- Soil Pollutants metabolism toxicity MeSH
- Mentha drug effects microbiology MeSH
- Lead metabolism toxicity MeSH
- Fruit chemistry MeSH
- Rhizosphere * MeSH
- Vegetables chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aminohydrolases MeSH
- Bacterial Proteins MeSH
- biochar MeSH Browser
- Charcoal MeSH
- Soil Pollutants MeSH
- Lead MeSH
Plant growth-promoting bacteria (PGPB) and putrescine (Put) have shown a promising role in the mitigation of abiotic stresses in plants. The present study was anticipated to elucidate the potential of Bacillus thuringiensis IAGS 199 and Put in mitigation of cadmium (Cd)-induced toxicity in Capsicum annum. Cadmium toxicity decreased growth, photosynthetic rate, gas exchange attributes and activity of antioxidant enzymes in C. annum seedlings. Moreover, higher levels of protein and non-protein bound thiols besides increased Cd contents were also observed in Cd-stressed plants. B. thuringiensis IAGS 199 and Put, alone or in combination, reduced electrolyte leakage (EL), hydrogen peroxide (H2O2) and malondialdehyde (MDA) level in treated plants. Synergistic effect of B. thuringiensis IAGS 199 and Put significantly enhanced the activity of stress-responsive enzymes including peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD). Furthermore, Put and microbial interaction enhanced the amount of proline, soluble sugars, and total soluble proteins in C. annum plants grown in Cd-contaminated soil. Data obtained during the current study advocates that application of B. thuringiensis IAGS 199 and Put establish a synergistic role in the mitigation of Cd-induced stress through modulating physiochemical features of C. annum plants.
- Keywords
- Capsicum annum, cadmium, growth, microbe, priming, putrescine,
- Publication type
- Journal Article MeSH