bark beetles
Dotaz
Zobrazit nápovědu
Although previous research has documented the occurrence of antagonists of bark beetles, the studies have only evaluated individual antagonists and have not assessed the overall effect of all antagonists on adult beetles. In this study, we determined which body-cavity antagonists were associated with a reduction in the fecundity and maternal gallery lengths of two important species of bark beetles: Ips typographus on Norway spruce and I. cembrae on European larch. We evaluated these relationships under natural conditions by collecting maternal females in galleries and examining their internal organs. The antagonists in the I. typographus hemolymph had significant negative associations with fecundity and gallery length. These antagonists were mainly nematodes and parasitoids in the hemocoel. In contrast, a positive association between gregarine presence and I. typographus fecundity was found. No antagonist that was likely to significantly alter I. cembrae fecundity or maternal gallery length was proven. Our study provides the first comprehensive assessment of antagonists that may have the potential impact on reduction the fecundity and thereby mass occurrence of these bark beetles.
- MeSH
- brouci * MeSH
- fertilita MeSH
- kůra rostlin MeSH
- nosatcovití * MeSH
- smrk * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bark beetles are destructive insect pests known to form symbioses with different fungal taxa, including yeasts. The aim of this study was to (1) determine the prevalence of the rare yeast Hyphopichia heimii in bark beetle frass from wild olive trees in South Africa and to (2) predict the potential interaction of this yeast with trees and bark beetles. Twenty-eight culturable yeast species were isolated from frass in 35 bark beetle galleries, including representatives of H. heimii from nine samples. Physiological characterization of H. heimii isolates revealed that none was able to degrade complex polymers present in hemicellulose; however, all were able to assimilate sucrose and cellobiose, sugars associated with an arboreal habitat. All isolates were able to produce the auxin indole acetic acid, indicative of a potential symbiosis with the tree. Sterol analysis revealed that the isolates possessed ergosterol quantities ranging from 3.644 ± 0.119 to 13.920 ± 1.230 mg/g dry cell weight, which suggested that H. heimii could serve as a source of sterols in bark beetle diets, as is known for other bark beetle-associated fungi. In addition, gas chromatography-mass spectrometry demonstrated that at least one of the isolates, Hyphopichia heimii CAB 1614, was able to convert the insect pheromone cis-verbenol to the anti-aggregation pheromone verbenone. This indicated that H. heimii could potentially influence beetle behaviour. These results support the contention of a tripartite symbiosis between H. heimii, olive trees, and bark beetles.
- Klíčová slova
- Bark beetle, Hyphopichia heimii, Olive trees, Symbiosis,
- MeSH
- brouci * mikrobiologie fyziologie MeSH
- feromony metabolismus MeSH
- kůra rostlin mikrobiologie MeSH
- kvasinky MeSH
- nosatcovití * MeSH
- Olea * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- feromony MeSH
Geosmithia species (Hypocreales, Ascomycota) are associates of bark beetles and other arthropods. One species, Geosmithia morbida, is a virulent tree pathogen of Juglans nigra. To date, 10 Geosmithia spp. from conifer-infesting, and at least 23 species from hardwood associated bark beetles have been reported from Europe. The aim of this study was to survey Geosmithia spp. associated with 18 bark and ambrosia beetle species in hardwood ecosystems in Poland. In addition, we evaluated the pathogenicity of the six Geosmithia species by inoculating Acer, Fagus, Quercus, Tilia and Ulmus seedlings. Our surveys yielded a total of 1060 isolates from 2915 beetles and 1887 galleries. We identified isolates using morphology and ITS, β-tubulin and TEF1-α sequences. Altogether we identified 11 species including nine previously known and two new species described here as Geosmithia fagi sp. nov. and G. pazoutovae sp. nov. In addition, a sister species G. longistipitata sp. nov., associated with Picea trees, is described here. Bark beetles from hardwoods, with exeption of Dryocoetes alni, D. villosus, Scolytus ratzeburgi and ambrosia beetles, appear to be regular vectors of Geosmithia spp. Like in other parts of the world, most Geosmithia taxa exhibited a distinct level of vector/host specificity. None of Geosmithia isolates induced any disease symptoms under the conditions of our experiment. This study highlights the need for more intensive surveys across additional areas of Central and Northern Europe, insect vectors and host tree species in order to elucidate the Geosmithia species diversity in this region.
- Klíčová slova
- 3 New Taxa, Ambrosia beetle, Bark beetle, Geosmithia, Hardwoods, Pathogenicity,
- MeSH
- Ambrosia MeSH
- brouci * MeSH
- ekosystém MeSH
- fylogeneze MeSH
- Hypocreales * MeSH
- kůra rostlin MeSH
- nosatcovití * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
Bark beetles reproduce and overwinter under the bark of trees, and are associated with bacteria that may influence the fitness of their hosts. As regard the aim of this study was to test the metabolic potential of bacterial strains, isolated from the bark beetle species Cryphalus piceae, Ips typographus and Pityophthorus pityophthorus and collected in the Czech Republic from fir, spruce and pine trees, respectively, to degrade plant cell compounds. The bacterial strains were identified as belonging to the genera Curtobacterium, Erwinia, Pantoea, Pseudomonas, Rahnella, Staphylococcus, and Yersinia. Several activities related to the degradation of lignocellulosic materials, such as cellulose, xylan and starch, were found. Moreover, the genomes of three of these strains were sequenced and analyzed, and the presence of the enzymatic machinery required for biomass hydrolysis was discovered. This finding supports the idea that bacteria aid in the provision of nutrients to the beetle from the hydrolysis of tree compounds, results that are relevant for studying the ecological implication of bacterial strains in the bark beetle life cycle. In addition, the activities found in association with the bacterial strains could be useful in biotechnological processes, such as the production of biofuels from biomass, colorant degradation, in the textile industry and for wastewater treatments. Furthermore, the gene sequences of the lignocellulolytic enzymes found within the genomes serve as a basis for future studies regarding the potential application of these bacteria, and their metabolic machinery, in processes such as biomass hydrolysis and bioremediation.
- Klíčová slova
- Amylases, Azo-dyes, Biomass hydrolysis, Cellulases, Genome sequence, Hemicellulases, Lignocellulolytic enzymes,
- MeSH
- Bacteria metabolismus MeSH
- borovice MeSH
- brouci mikrobiologie MeSH
- jedle MeSH
- kůra rostlin MeSH
- lesy * MeSH
- lignin metabolismus MeSH
- smrk MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- lignin MeSH
- lignocellulose MeSH Prohlížeč
Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by beetles attacking trees. Models have a role to play in helping unravel the effects of variable tree resistance and beetle aggregation on bark beetle outbreaks. In this article we develop a new mathematical model for bark beetle outbreaks using an analogy with epidemiological models. Because the model operates on several distinct time scales, singular perturbation methods are used to simplify the model. The result is a dynamical system that tracks populations of uninfested and infested trees. A limiting case of the model is a discontinuous function of state variables, leading to solutions in the Filippov sense. The model assumes an extensive seed-bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered for immigration of new beetles. The first is a single tree stand with beetles immigrating from outside while the second considers two forest stands with beetle dispersal between them. For the seed-bank driven recruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free state. At high beetle immigration rates beetle populations approach an endemic equilibrium state. At intermediate immigration rates, the model predicts bistability as the forest can be in either of the two equilibrium states: a healthy forest, or a forest with an endemic beetle population. The model bistability leads to hysteresis. Interactions between two stands show how a less resistant stand of trees may provide an initial toe-hold for the invasion, which later leads to a regional beetle outbreak in the resistant stand.
- Klíčová slova
- Bark beetle, Bistability, Dendroctonus ponderosae, Dispersal, Filippov solution, Hysteresis, Population dynamics, SI models, Stability,
- MeSH
- biologické modely * MeSH
- brouci fyziologie MeSH
- epidemický výskyt choroby * MeSH
- kůra rostlin parazitologie MeSH
- nemoci rostlin parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Tree-killing bark beetles are the most economically important insects in conifer forests worldwide. However, despite >200 years of research, the drivers of population eruptions and crashes are still not fully understood and the existing knowledge is thus insufficient to face the challenges posed by the Anthropocene. We critically analyze potential biotic and abiotic drivers of population dynamics of an exemplary species, the European spruce bark beetle (ESBB) (Ips typographus) and present a multivariate approach that integrates the many drivers governing this bark beetle system. We call for hypothesis-driven, large-scale collaborative research efforts to improve our understanding of the population dynamics of this and other bark beetle pests. Our approach can serve as a blueprint for tackling other eruptive forest insects.
- Klíčová slova
- bark beetle, biotic interactions, forest insect pest, global change, population dynamics, symbiosis,
- MeSH
- brouci * MeSH
- kůra rostlin MeSH
- populační dynamika MeSH
- smrk * MeSH
- stromy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Bark beetles are destructive forest pests considering their remarkable contribution to forest depletion. Their association with fungi is useful against the challenges of survival on the noxious and nutritionally limited substrate, i.e., conifer tissues. Fungal symbionts help the beetles in nutrient acquisition and detoxification of toxic tree secondary metabolites. Although gut is the prime location for food digestion and detoxification, limited information is available on gut-mycobiome of bark beetles. The present study screened the gut-mycobiont from six bark beetles (five Ips and one non-Ips) from Scolytinae subfamily using high-throughput sequencing and explored their putative role in symbiosis with the host insect. Results revealed the predominance of four fungal classes- Sordariomycetes, Saccharomycetes, Eurothiomycetes, and Dothidomycetes in all bark beetles. Apart from these, Agaricomycetes, Leothiomycetes, Incertae sedis Basidiomycota, Tremellomycetes, Lecanoromycetes, and Microbotryomycetes were also documented in different beetles. Five Ips bark beetles share a consortium of core fungal communities in their gut tissues consisting of 47 operational taxonomic units (OTUs) belonging to 19 fungal genera. The majority of these core fungal genera belong to the phylum Ascomycota. LEfSe analysis revealed a set of species-specific fungal biomarkers in bark beetles. The present study identified the gut mycobiont assemblage in bark beetles and their putative ecological relevance. An enriched understanding of bark beetle-fungal symbiosis is not only filling the existing knowledge gap in the field but may also unleash an unforeseen potential for future bark beetle management.
- Klíčová slova
- Ips, OTUs, Scolytinae, bark beetles, core community, fungal-biomarkers, gut-mycobiont, symbiosis,
- Publikační typ
- časopisecké články MeSH
Geosmithia spp. (Ascomycota: Hypocreales) are dry-spored fungi that occur in galleries built by many phloeophagous bark beetles. This study mapped the diversity, host spectrum and area of distribution of Geosmithia spp. occurring in galleries of bark beetle species with a Mediterranean distribution. Eighty-six wood samples of 19 tree species infested by 18 subcortical insect species were collected from across the Mediterranean Basin during the years 2003-2006. Geosmithia spp. were found in 82 samples of angiosperms and two host trees from the family Juniperaceae infested by 14 bark beetles and the bostrichid Scobicia pustulata, suggesting that the association of Geosmithia and phloeophagous bark beetles is very widespread in the Mediterranean. Geosmithia isolates were sorted into 13 operational taxonomic units (OTUs) based on their phenotype similarity and phylogeny of their ITS regions of rDNA (ITS1-5.8S-ITS2). The OTUs represent five known species (G. flava, G. langdonii, G. lavendula, G. pallida, G. putterillii) and seven undescribed taxa. Most of the bark beetles were associated with on average 1-2.5 OTUs per sample. G. lavendula, considered very uncommon in nature, was found as a common associate of bark beetles. Six out of 13 OTUs were found to be distributed in the Mediterranean but not in neighbouring areas of temperate Europe suggesting that Geosmithia spp. have a geographically limited distribution, probably due to their dependency on the geographically limited area of their vectors. The proportion of generalists and specialists among Geosmithia spp. was smaller compared with data from temperate Europe. A possible explanation is the effective dispersal of Geosmithia by polyphagous bostrichids across the niches defined by mutually exclusive bark beetles.
- MeSH
- brouci klasifikace růst a vývoj MeSH
- cévnaté rostliny mikrobiologie parazitologie MeSH
- DNA fungální analýza izolace a purifikace MeSH
- druhová specificita MeSH
- fenotyp MeSH
- fylogeneze * MeSH
- Hypocreales klasifikace genetika růst a vývoj izolace a purifikace MeSH
- kůra rostlin mikrobiologie parazitologie MeSH
- Magnoliopsida mikrobiologie parazitologie MeSH
- mezerníky ribozomální DNA analýza MeSH
- molekulární sekvence - údaje MeSH
- sekvenční analýza DNA MeSH
- technika náhodné amplifikace polymorfní DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Středomoří MeSH
- Názvy látek
- DNA fungální MeSH
- mezerníky ribozomální DNA MeSH
Windfelled Norway spruce (Picea abies) trees play a crucial role in triggering large-scale outbreaks of the European spruce bark beetle Ips typographus. Outbreak management therefore strives to remove windfelled trees to reduce the risk of outbreaks, a measure referred to as sanitation logging (SL). Although this practice has been traditionally applied, its efficiency in preventing outbreaks remains poorly understood. We used the landscape simulation model iLand to investigate the effects of different spatial configurations and intensities of SL of windfelled trees on the subsequent disturbance by bark beetles. We studied differences between SL applied evenly across the landscape, focused on the vicinity of roads (scenario of limited logging resources) and concentrated in a contiguous block (scenario of spatially diversified management objectives). We focused on a 16 050 ha forest landscape in Central Europe. The removal of >80% of all windfelled trees is required to substantially reduce bark beetle disturbances. Focusing SL on the vicinity of roads created a "fire break effect" on bark beetle spread, and was moderately efficient in reducing landscape-scale bark beetle disturbance. Block treatments substantially reduced outbreaks in treated areas. Leaving parts of the landscape untreated (e.g., conservation areas) had no significant amplifying effect on outbreaks in managed areas. Climate change increased bark beetle disturbances and reduced the effect of SL. Our results suggest that past outbreak management methods will not be sufficient to counteract climate-mediated increases in bark beetle disturbance.
- Klíčová slova
- Climate change, Forest landscape, Process-based ecosystem modelling, Sanitation logging, Wind-bark beetle interactions,
- MeSH
- brouci * MeSH
- kůra rostlin MeSH
- lesy MeSH
- stromy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Norsko MeSH
Fungi of the genus Geosmithia are frequently associated with bark beetles that feed on phloem on various woody hosts. Most studies on Geosmithia were carried out in North and South America and Europe, with only two species being reported from Taiwan, China. This study aimed to investigate the diversity of Geosmithia species in China. Field surveys in Fujian, Guangdong, Guangxi, Hunan, Jiangsu, Jiangxi, Shandong, Shanghai, and Yunnan yielded a total of 178 Geosmithia isolates from 12 beetle species. The isolates were grouped based on morphology. The internal transcribed spacer, β-tubulin, and elongation factor 1-α gene regions of the representatives of each group were sequenced. Phylogenetic trees were constructed based on those sequences. In total, 12 species were identified, with three previously described species (Geosmithia xerotolerans, G. putterillii, and G. pallida) and nine new species which are described in this paper as G. luteobrunnea, G. radiata, G. brevistipitata, G. bombycina, G. granulata (Geosmithia sp. 20), G. subfulva, G. pulverea (G. sp. 3 and Geosmithia sp. 23), G. fusca, and G. pumila sp. nov. The dominant species obtained in this study were G. luteobrunnea and G. pulverea. This study systematically studied the Geosmithia species in China and made an important contribution to filling in the gaps in our understanding of global Geosmithia species diversity.
- Klíčová slova
- 9 new taxa, Geosmithia, bark beetles, fungal community, symbiosis,
- Publikační typ
- časopisecké články MeSH